Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
J Virol ; 96(10): e0030622, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35475666

ABSTRACT

This study developed a system consisting of two rounds of screening cellular proteins involved in the nuclear egress of herpes simplex virus 1 (HSV-1). Using this system, we first screened cellular proteins that interacted with the HSV-1 nuclear egress complex (NEC) consisting of UL34 and UL31 in HSV-1-infected cells, which are critical for the nuclear egress of HSV-1, by tandem affinity purification coupled with mass spectrometry-based proteomics technology. Next, we performed CRISPR/Cas9-based screening of live HSV-1-infected reporter cells under fluorescence microscopy using single guide RNAs targeting the cellular proteins identified in the first proteomic screening to detect the mislocalization of the lamin-associated protein emerin, which is a phenotype for defects in HSV-1 nuclear egress. This study focused on a cellular orphan transporter SLC35E1, one of the cellular proteins identified by the screening system. Knockout of SLC35E1 reduced HSV-1 replication and induced membranous invaginations containing perinuclear enveloped virions (PEVs) adjacent to the nuclear membrane (NM), aberrant accumulation of PEVs in the perinuclear space between the inner and outer NMs and the invagination structures, and mislocalization of the NEC. These effects were similar to those of previously reported mutation(s) in HSV-1 proteins and depletion of cellular proteins that are important for HSV-1 de-envelopment, one of the steps required for HSV-1 nuclear egress. Our newly established screening system enabled us to identify a novel cellular protein required for efficient HSV-1 de-envelopment. IMPORTANCE The identification of cellular protein(s) that interact with viral effector proteins and function in important viral procedures is necessary for enhancing our understanding of the mechanics of various viral processes. In this study, we established a new system consisting of interactome screening for the herpes simplex virus 1 (HSV-1) nuclear egress complex (NEC), followed by loss-of-function screening to target the identified putative NEC-interacting cellular proteins to detect a defect in HSV-1 nuclear egress. This newly established system identified SLC35E1, an orphan transporter, as a novel cellular protein required for efficient HSV-1 de-envelopment, providing an insight into the mechanisms involved in this viral procedure.


Subject(s)
Herpesvirus 1, Human , Membrane Transport Proteins , Virus Release , Animals , CRISPR-Cas Systems , Chlorocebus aethiops , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Humans , Membrane Transport Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins , Proteomics , Vero Cells , Viral Proteins/metabolism
2.
Preprint in English | bioRxiv | ID: ppbiorxiv-485591

ABSTRACT

Interferon regulatory factors (IRFs) are key elements of antiviral innate responses that regulate transcription of interferons (IFNs) and IFN-stimulated genes (ISGs). As many human coronaviruses are known to be sensitive to IFN, antiviral roles of IRFs are yet to be fully understood. TypeI or II IFN treatment protected MRC5 cells from infection of human coronavirus 229E, but not human coronavirus OC43. Infection of 229E or OC43 efficiently upregulated ISGs, indicating that antiviral transcription is not suppressed during their infection. Antiviral IRFs, IRF1, IRF3 and IRF7, were activated in cells infected with 229E, OC43 or severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2). RNAi knockdown and overexpression of the IRFs demonstrated that IRF1 and IRF3 have antiviral property against OC43 while only IRF3 and IRF7 are effective to restrict 229E infection. Our study demonstrates that IRF3 plays critical roles against infection of human coronavirus 229E and OC43, which may be an anti-human coronavirus therapeutic target.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-485084

ABSTRACT

The SARS-CoV-2 Omicron variant reportedly displays decreased usage of the cell surface entry pathway mediated by the host transmembrane protease, serine 2 (TMPRSS2) and increased usage of the endosomal entry pathway mediated by cathepsin B/L. These differences result in different cell tropisms and low fusogenicity from other SARS-CoV-2 variants. Recent studies have revealed that host metalloproteases are also involved in cell surface entry and fusogenic activity of SARS-CoV-2, independent of TMPRSS2. However, the involvement of metalloproteinase-mediated cell entry and fusogenicity in Omicron infections has not been investigated. Here, we report that Omicron infection is less sensitive to the metalloproteinase inhibitor marimastat, like the TMPRSS2 inhibitor nafamostat, and is more sensitive to the cathepsin B/L inhibitor E-64d than infections with wild-type SARS-CoV-2 and other variants. The findings indicate that Omicron preferentially utilizes the endosomal pathway rather than cell surface pathways for entry. Moreover, the Omicron variant also displays poor syncytia formation mediated by metalloproteinases, even when the S cleavage status mediated by fusion-like proteases is unchanged. Intriguingly, the pseudovirus assay showed that a single mutation, H655Y, of the Omicron spike (S) is responsible for the preferential entry pathway usage without affecting the S cleavage status. These findings suggest that the Omicron variant has altered entry properties and fusogenicity, probably through the H655Y mutation in its S protein, leading to modulations of tissue and cell tropism, and reduced pathogenicity. Author summaryRecent studies have suggested that the SARS-CoV-2 Omicron variant displays altered cell tropism and fusogenicity, in addition to immune escape. However, comprehensive analyses of the usage of viral entry pathways in Omicron variant have not been performed. Here, we used protease inhibitors to block each viral entry pathway mediated by the three host proteases (cathepsin B/L, TMPRSS2, and metalloproteinases) in various cell types. The results clearly indicated that Omicron exhibits enhanced cathepsin B/L-dependent endosome entry and reduced metalloproteinase-dependent and TMPRSS2-dependent cell surface entry. Furthermore, the H655Y mutation of Omicron S determines the relative usage of the three entry pathways without affecting S cleavage by the host furin-like proteases. Comparative data among SARS-CoV-2 variants, including Omicron, may clarify the biological and pathological phenotypes of Omicron but increase the understanding of disease progression in infections with other SARS-CoV-2 variants.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-472513

ABSTRACT

The ongoing global vaccination program to prevent SARS-CoV-2 infection, the causative agent of COVID-19, has had significant success. However, recently virus variants have emerged that can evade the immunity in a host achieved through vaccination. Consequently, new therapeutic agents that can efficiently prevent infection from these new variants, and hence COVID-19 spread are urgently required. To achieve this, extensive characterization of virus-host cell interactions to identify effective therapeutic targets is warranted. Here, we report a cell surface entry pathway of SARS-CoV-2 that exists in a cell type-dependent manner is TMPRSS2-independent but sensitive to various broad-spectrum metalloproteinase inhibitors such as marimastat and prinomastat. Experiments with selective metalloproteinase inhibitors and gene-specific siRNAs revealed that a disintegrin and metalloproteinase 10 (ADAM10) is partially involved in the metalloproteinase pathway. Consistent with our finding that the pathway is unique to SARS-CoV-2 among highly pathogenic human coronaviruses, both the furin cleavage motif in the S1/S2 boundary and the S2 domain of SARS-CoV-2 spike protein are essential for metalloproteinase-dependent entry. In contrast, the two elements of SARS-CoV-2 independently contributed to TMPRSS2-dependent S2 priming. The metalloproteinase pathway is involved in SARS-CoV-2-induced syncytia formation and cytopathicity, leading us to theorize that it is also involved in the rapid spread of SARS-CoV-2 and the pathogenesis of COVID-19. Thus, targeting the metalloproteinase pathway in addition to the TMPRSS2 and endosome pathways could be an effective strategy by which to cure COVID-19 in the future. Author SummaryTo develop effective therapeutics against COVID-19, it is necessary to elucidate in detail the infection mechanism of the causative agent, SARS-CoV-2, including recently emerging variants. SARS-CoV-2 binds to the cell surface receptor ACE2 via the Spike protein, and then the Spike protein is cleaved by host proteases to enable entry. Selection of target cells by expression of these tissue-specific proteases contributes to pathogenesis. Here, we found that the metalloproteinase-mediated pathway is important for SARS-CoV-2 infection, variants included. This pathway requires both the prior cleavage of Spike into two domains and a specific sequence in the second domain S2, conditions met by SARS-CoV-2 but lacking in the related human coronavirus SARS-CoV. The contribution of several proteases, including metalloproteinases, to SARS-CoV-2 infection was cell type dependent, especially in cells derived from kidney, ovary, and endometrium, in which SARS-CoV-2 infection was metalloproteinase-dependent. In these cells, inhibition of metalloproteinases by treatment with marimastat or prinomastat, whose safety was previously confirmed in clinical trials, was important in preventing cell death. Our study provides new insights into the complex pathogenesis unique to COVID-19 and relevant to the development of effective therapies.

5.
Article in English | WPRIM (Western Pacific) | ID: wpr-897319

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARSCoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

6.
Article in English | WPRIM (Western Pacific) | ID: wpr-889615

ABSTRACT

A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARSCoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-054981

ABSTRACT

Although infection by SARS-CoV-2, the causative agent of COVID-19, is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked MERS-CoV S protein-initiated cell fusion by targeting TMPRSS2, and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on SARS-CoV-2 S protein, ACE2 and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an EC50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. These findings, together with accumulated clinical data regarding its safety, make nafamostat a likely candidate drug to treat COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...