Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Autism ; 12(1): 4, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33482917

ABSTRACT

BACKGROUND: The inability to observe relevant biological processes in vivo significantly restricts human neurodevelopmental research. Advances in appropriate in vitro model systems, including patient-specific human brain organoids and human cortical spheroids (hCSs), offer a pragmatic solution to this issue. In particular, hCSs are an accessible method for generating homogenous organoids of dorsal telencephalic fate, which recapitulate key aspects of human corticogenesis, including the formation of neural rosettes-in vitro correlates of the neural tube. These neurogenic niches give rise to neural progenitors that subsequently differentiate into neurons. Studies differentiating induced pluripotent stem cells (hiPSCs) in 2D have linked atypical formation of neural rosettes with neurodevelopmental disorders such as autism spectrum conditions. Thus far, however, conventional methods of tissue preparation in this field limit the ability to image these structures in three-dimensions within intact hCS or other 3D preparations. To overcome this limitation, we have sought to optimise a methodological approach to process hCSs to maximise the utility of a novel Airy-beam light sheet microscope (ALSM) to acquire high resolution volumetric images of internal structures within hCS representative of early developmental time points. RESULTS: Conventional approaches to imaging hCS by confocal microscopy were limited in their ability to image effectively into intact spheroids. Conversely, volumetric acquisition by ALSM offered superior imaging through intact, non-clarified, in vitro tissues, in both speed and resolution when compared to conventional confocal imaging systems. Furthermore, optimised immunohistochemistry and optical clearing of hCSs afforded improved imaging at depth. This permitted visualization of the morphology of the inner lumen of neural rosettes. CONCLUSION: We present an optimized methodology that takes advantage of an ALSM system that can rapidly image intact 3D brain organoids at high resolution while retaining a large field of view. This imaging modality can be applied to both non-cleared and cleared in vitro human brain spheroids derived from hiPSCs for precise examination of their internal 3D structures. This process represents a rapid, highly efficient method to examine and quantify in 3D the formation of key structures required for the coordination of neurodevelopmental processes in both health and disease states. We posit that this approach would facilitate investigation of human neurodevelopmental processes in vitro.


Subject(s)
Cell Culture Techniques , Cerebral Cortex/cytology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Microscopy , Organoids , Spheroids, Cellular , Fluorescent Antibody Technique , Humans , Microscopy/methods
3.
Hum Mol Genet ; 25(6): 1074-87, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26755825

ABSTRACT

Mutations in the ALS2 gene result in early-onset amyotrophic lateral sclerosis, infantile-onset ascending hereditary spastic paraplegia and juvenile primary lateral sclerosis, suggesting prominent upper motor neuron involvement. However, the importance of alsin function for corticospinal motor neuron (CSMN) health and stability remains unknown. To date, four separate alsin knockout (Alsin(KO)) mouse models have been generated, and despite hopes of mimicking human pathology, none displayed profound motor function defects. This, however, does not rule out the possibility of neuronal defects within CSMN, which is not easy to detect in these mice. Detailed cellular analysis of CSMN has been hampered due to their limited numbers and the complex and heterogeneous structure of the cerebral cortex. In an effort to visualize CSMN in vivo and to investigate precise aspects of neuronal abnormalities in the absence of alsin function, we generated Alsin(KO)-UeGFP mice, by crossing Alsin(KO) and UCHL1-eGFP mice, a CSMN reporter line. We find that CSMN display vacuolated apical dendrites with increased autophagy, shrinkage of soma size and axonal pathology even in the pons region. Immunocytochemistry coupled with electron microscopy reveal that alsin is important for maintaining cellular cytoarchitecture and integrity of cellular organelles. In its absence, CSMN displays selective defects both in mitochondria and Golgi apparatus. UCHL1-eGFP mice help understand the underlying cellular factors that lead to CSMN vulnerability in diseases, and our findings reveal unique importance of alsin function for CSMN health and stability.


Subject(s)
Guanine Nucleotide Exchange Factors/deficiency , Motor Neurons/metabolism , Pyramidal Tracts/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Autophagy/physiology , Axons/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Dendrites/metabolism , Disease Models, Animal , Female , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Mice , Mice, Knockout , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Motor Neurons/pathology , Mutation , Pyramidal Tracts/metabolism , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , Spastic Paraplegia, Hereditary/pathology
4.
J Neurosci ; 33(18): 7890-904, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23637180

ABSTRACT

Understanding mechanisms that lead to selective motor neuron degeneration requires visualization and cellular identification of vulnerable neurons. Here we report generation and characterization of UCHL1-eGFP and hSOD1(G93A)-UeGFP mice, novel reporter lines for cortical and spinal motor neurons. Corticospinal motor neurons (CSMN) and a subset of spinal motor neurons (SMN) are genetically labeled in UCHL1-eGFP mice, which express eGFP under the UCHL1 promoter. eGFP expression is stable and continues through P800 in vivo. Retrograde labeling, molecular marker expression, electrophysiological analysis, and cortical circuit mapping confirmed CSMN identity of eGFP(+) neurons in the motor cortex. Anatomy, molecular marker expression, and electrophysiological analysis revealed that the eGFP expression is restricted to a subset of small-size SMN that are slow-twitch α and γ motor neurons. Crossbreeding of UCHL1-eGFP and hSOD1(G93A) lines generated hSOD1(G93A)-UeGFP mice, which displayed the disease phenotype observed in a hSOD1(G93A) mouse model of ALS. eGFP(+) SMN showed resistance to degeneration in hSOD1(G93A)-UeGFP mice, and their slow-twitch α and γ motor neuron identity was confirmed. In contrast, eGFP(+) neurons in the motor cortex of hSOD1(G93A)-UeGFP mice recapitulated previously reported progressive CSMN loss and apical dendrite degeneration. Our findings using these two novel reporter lines revealed accumulation of autophagosomes along the apical dendrites of vulnerable CSMN at P60, early symptomatic stage, suggesting autophagy as a potential intrinsic mechanism for CSMN apical dendrite degeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Green Fluorescent Proteins/metabolism , Motor Neurons/pathology , Spinal Cord/pathology , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Dendrites/metabolism , Dendrites/pathology , Disease Models, Animal , Green Fluorescent Proteins/genetics , Homeodomain Proteins/genetics , In Vitro Techniques , Lasers , Male , Membrane Potentials/genetics , Membrane Potentials/physiology , Mice , Mice, Transgenic , Motor Neurons/metabolism , Nerve Tissue Proteins/metabolism , Neural Pathways/pathology , Patch-Clamp Techniques , Photic Stimulation , Superoxide Dismutase/genetics , Transcription Factors/genetics , Ubiquitin Thiolesterase
5.
PLoS Biol ; 10(6): e1001350, 2012.
Article in English | MEDLINE | ID: mdl-22745599

ABSTRACT

The architecture of dendritic arbors determines circuit connectivity, receptive fields, and computational properties of neurons, and dendritic structure is impaired in several psychiatric disorders. While apical and basal dendritic compartments of pyramidal neurons are functionally specialized and differentially regulated, little is known about mechanisms that selectively maintain basal dendrites. Here we identified a role for the Ras/Epac2 pathway in maintaining basal dendrite complexity of cortical neurons. Epac2 is a guanine nucleotide exchange factor (GEF) for the Ras-like small GTPase Rap, and it is highly enriched in the adult mouse brain. We found that in vivo Epac2 knockdown in layer 2/3 cortical neurons via in utero electroporation reduced basal dendritic architecture, and that Epac2 knockdown in mature cortical neurons in vitro mimicked this effect. Overexpression of an Epac2 rare coding variant, found in human subjects diagnosed with autism, also impaired basal dendritic morphology. This mutation disrupted Epac2's interaction with Ras, and inhibition of Ras selectively interfered with basal dendrite maintenance. Finally, we observed that components of the Ras/Epac2/Rap pathway exhibited differential abundance in the basal versus apical dendritic compartments. These findings define a role for Epac2 in enabling crosstalk between Ras and Rap signaling in maintaining basal dendrite complexity, and exemplify how rare coding variants, in addition to their disease relevance, can provide insight into cellular mechanisms relevant for brain connectivity.


Subject(s)
Autistic Disorder/genetics , Dendrites/metabolism , Guanine Nucleotide Exchange Factors/genetics , Signal Transduction , Animals , Autistic Disorder/metabolism , Cell Communication , Female , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Neurons/metabolism , Rats , Rats, Sprague-Dawley , ras Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...