Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci ; 370: 109165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387836

ABSTRACT

The sterile insect technique (SIT) is a technique to control pests and vectors of diseases by releasing mainly sterile males. Several challenges need to be solved before large-scale field application in order to guarantee its success. In this paper we intend to focus on two important issues: residual fertility in released (sterile) males and contamination of each release by sterile females. Indeed, sterile males are never 100% sterile, that is there is always a small proportion, ɛ, of fertile males (sperm of) within the sterile males population. Among the sterile insects that are released, a certain proportion, ϵF, of them are sterile females due to imperfect mechanical sex-separation technique. This can be particularly problematic when arthropod viruses are circulating, because mosquito females, even sterile, are vectors of diseases. Various upper bound values are given in the entomological literature for ϵF and ɛ without clear explanations. In this work, we aim to show that these values are related to the biological parameters of the targeted vector, the sterile insects release rate, and the epidemiological parameters of a vector-borne disease, like Dengue. We extend results studied separately in Aronna and Dumont (2020), Dumont and Yatat-Djeumen (2022). To study the impact of both issues, we develop and study a SIT-entomological-epidemiological mathematical model, with application to Dengue. Qualitative analysis of the model is carried out to highlight threshold values that shape the overall dynamics of the system. We show that vector elimination is possible only when Nɛ<1, where N is the basic-offspring number related to the targeted wild population. To ensure the success of SIT control, we recommend that the issue of residual fertility be addressed as a priority and then that contamination by sterile females be minimized with each release.


Subject(s)
Aedes , Dengue , Infertility, Male , Humans , Animals , Male , Female , Mosquito Vectors , Semen , Fertility , Disease Vectors , Mosquito Control/methods
2.
Math Biosci ; 343: 108724, 2022 01.
Article in English | MEDLINE | ID: mdl-34748880

ABSTRACT

The sterile insect technique (SIT) is a technique to control some vectors of diseases by releasing sterile males. However, during these releases, sterilized females can be (accidentally) released and since only females are vectors of diseases, it is important to study their impact when arthropod viruses are circulating. To that aim, we develop and study an entomological-epidemiological model, considering either permanent or periodic releases. Qualitative analyses of the continuous and periodic models are conducted. We highlight a critical sterile males release rate, ΛMcrit, above which the control of wild population is always effective, using massive releases. Estimating the basic reproduction number of the epidemiological model, R02, we show that if it is above a certain threshold, R0,∗2, that depends on the basic offspring number, N, and the release rate of sterile females, the epidemiological risk can only be controlled using (very) massive releases. Otherwise, we can estimate the basic reproduction number of the SIT epidemiological model, R0,SIT2, that shapes the stability property of the (periodic) disease-free equilibrium. We show that it might be possible to take R0,SIT2 below 1 using non-massive, but large enough, releases. However, practically, it seems more efficient to consider massive releases, followed by small releases once the vector population is small enough. In addition to SIT, we also recommend mechanical control, i.e. the reduction of breeding sites, that greatly improves the efficacy of SIT, in terms of duration or size of the releases. Our results reveal that outside an epidemic period, the release of sterile females is not an issue, as long as the sterile males release rate is greater than ΛMcrit. Within an epidemic period, we show that sterile females releases do not really impact the SIT efficiency, as long as the release rate, ΛF, is lower than a critical value, ΛFcrit, that depends on the mosquito and epidemiological threshold parameters, N, and R02. To illustrate numerically our theoretical results, we consider Dengue parameters. We estimate all thresholds and also the effective reproduction number, Reff2, and highlight the importance of early permanent or periodic SIT control to prevent or mitigate the risk of a Dengue epidemic, with and without sterile females releases.


Subject(s)
Aedes , Dengue , Infertility, Male , Vector Borne Diseases , Viruses , Animals , Female , Humans , Insecta , Male , Mosquito Control/methods , Mosquito Vectors
SELECTION OF CITATIONS
SEARCH DETAIL
...