Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
J Org Chem ; 87(19): 13280-13287, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36162101

ABSTRACT

The 2-iodoxybenzoic acid (IBX)-controlled oxidative dearomatization of pyrroles occurs very slowly (or not all) in many organic solvents, including DMSO in which IBX is soluble. Interestingly, although IBX is only partially soluble in acetic acid, this solvent mediates the pyrrole oxidative dearomatization. With the aid of density functional theory (DFT) calculations, we have discovered a new mode of reactivity, termed the periodinane oxy-assisted (POA) oxidation mechanism, which explains this observation.


Subject(s)
Acetic Acid , Pyrroles , Dimethyl Sulfoxide , Oxidative Stress , Solvents
2.
Chemistry ; 28(11): e202104376, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-34958698

ABSTRACT

Diazo compounds have been largely used as carbene precursors for carbene transfer reactions in a variety of functionalization reactions. However, the ease of carbene generation from the corresponding diazo compounds depends upon the electron donating/withdrawing substituents either side of the diazo functionality. These groups strongly impact the ease of N2 release. Recently, tris(pentafluorophenyl)borane [B(C6 F5 )3 ] has been shown to be an alternative transition metal-free catalyst for carbene transfer reactions. Herein, a density functional theory (DFT) study on the generation of carbene species from α-aryl α-diazocarbonyl compounds using catalytic amounts of B(C6 F5 )3 is reported. The significant finding is that the efficiency of the catalyst depends directly on the nature of the substituents on both the aryl ring and the carbonyl group of the substrate. In some cases, the boron catalyst has negligible effect on the ease of the carbene formation, while in other cases there is a dramatic reduction in the activation energy of the reaction. This direct dependence is not commonly observed in catalysis and this finding opens the way for intelligent design of this and other similar catalytic reactions.

3.
Angew Chem Int Ed Engl ; 60(46): 24395-24399, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34590773

ABSTRACT

In recent years, metal-free organic synthesis using triarylboranes as catalysts has become a prevalent research area. Herein we report a comprehensive computational and experimental study for the highly selective synthesis of N-substituted pyrazoles through the generation of carbenium species from the reaction between aryl esters and vinyl diazoacetates in the presence of catalytic tris(pentafluorophenyl)borane [B(C6 F5 )3 ]. DFT studies were undertaken to illuminate the reaction mechanism revealing that the in situ generation of a carbenium species acts as an autocatalyst to prompt the regiospecific formation of N-substituted pyrazoles in good to excellent yields (up to 81 %).

4.
J Org Chem ; 86(17): 12237-12246, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34410728

ABSTRACT

Hypervalent iodine (HVI) compounds are efficient reagents for the double oxidative dearomatization of electron-rich phenols to o-quinones. We recently reported that an underexplored class of iodine(V) reagents possessing bidentate bipyridine ligands, termed Bi(N)-HVIs, could dearomatize electron-poor phenols for the first time. To understand the fundamental mechanistic basis of this unique reactivity, density functional theory (DFT) was utilized. In this way, different pathways were explored to determine why Bi(N)-HVIs are capable of facilitating these challenging transformations while more traditional hypervalent species, such as 2-iodoxybenzoic acid (IBX), cannot. Our calculations reveal that the first redox process is the rate-determining step, the barrier of which hinges on the identity of the ligands bound to the iodine(V) center. This crucial process is composed of three steps: (a) ligand exchange, (b) hypervalent twist, and (c) reductive elimination. We found that strong coordinating ligands disfavor these elementary steps, and, for this reason, HVIs bearing such ligands cannot oxidize the electron-poor phenols. In contrast, the weakly coordinating triflate ligands in Bi(N)-HVIs allow for the kinetically favorable oxidation. It was identified that trapping in situ-generated triflic acid is a key role played by the bidentate bipyridine ligands in Bi(N)-HVIs as this serves to minimize the decomposition of the ortho-quinone product.

5.
J Am Chem Soc ; 143(11): 4451-4464, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33719443

ABSTRACT

The donor-acceptor ability of frustrated Lewis pairs (FLPs) has led to widespread applications in organic synthesis. Single electron transfer from a donor Lewis base to an acceptor Lewis acid can generate a frustrated radical pair (FRP) depending on the substrate and energy required (thermal or photochemical) to promote an FLP into an FRP system. Herein, we report the Csp3-Csp cross-coupling reaction of aryl esters with terminal alkynes using the B(C6F5)3/Mes3P FLP. Significantly, when the 1-ethynyl-4-vinylbenzene substrate was employed, the exclusive formation of Csp3-Csp cross-coupled products was observed. However, when 1-ethynyl-2-vinylbenzene was employed, solvent-dependent site-selective Csp3-Csp or Csp3-Csp2 cross-coupling resulted. The nature of these reaction pathways and their selectivity has been investigated by extensive electron paramagnetic resonance (EPR) studies, kinetic studies, and density functional theory (DFT) calculations both to elucidate the mechanism of these coupling reactions and to explain the solvent-dependent site selectivity.

6.
J Org Chem ; 85(2): 515-525, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31876155

ABSTRACT

Density functional theory was utilized to investigate plausible mechanisms for amine and alcohol oxidation by an iodine(V) hypervalent reagent (IBX). In this contribution, we found that amine and alcohol oxidation both proceed by similar mechanisms. The reactions initiate from ligand exchange to give four coordinate intermediates followed by a redox process giving an iodine(III) species and oxidized substrates. Interestingly, for both the ligand-exchange and the redox steps a hypervalent twist is required for the reaction to proceed via an energetically more accessible route. The ligand-exchange process was found to be mediated by a proton-shuttling agent such as water, a second IBX, or a second substrate. While the ligand-exchange step for both amine and alcohol occurs with almost identical activation energy (particularly when water is considered as the shuttling agent), the redox step for the amine takes place with much lower activation energy than that for the alcohol. Finally, we ascertained that five coordinate amide iodine(V) complexes are unreactive toward redox reactions due to the fact that in such cases two electrons from the coordinated amide are required to occupy a 3c-4e σ* orbital which is too high in energy to be reachable.

7.
Chemistry ; 25(52): 12180-12186, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31310400

ABSTRACT

Precise control of the selectivity in organic synthesis is important to access the desired molecules. We demonstrate a regiospecific annulation of unsymmetrically substituted 1,2-di(arylethynyl)benzene derivatives for a geometry-controlled synthesis of linear bispentalenes, which is one of the promising structures for material science. A gold-catalyzed annulation of unsymmetrically substituted 1,2-di(arylethynyl)benzene could produce two isomeric pentalenes, but both electronic and steric effects on the aromatics at the terminal position of the alkyne prove to be crucial for the selectivity; especially a regiospecific annulation was achieved with sterically blocked substituents; namely, 2,4,6-trimetyl benzene or 2,4-dimethyl benzene. This approach enables the geometrically controlled synthesis of linear bispentalenes from 1,2,4,5-tetraethynylbenzene or 2,3,6,7-tetraethynylnaphthalene. Moreover, the annulation of a series of tetraynes with a different substitution pattern regioselectively provided the bispentalene scaffolds. A computational study revealed that this is the result of a kinetic control induced by the bulky NHC ligands.

8.
Dalton Trans ; 48(20): 6997-7005, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31044194

ABSTRACT

In contrast to early transition metal complexes of d0 electron configuration, their main group metal analogues are usually poor catalysts for ethylene polymerisation due to their diminished tendency to insert ethylene into an M-R bond. Interestingly, we found that ring strain in the transition structure of the insertion reaction is most likely responsible to set the ease of the process. Ethylene insertion into an M-R bond requires a four-membered ring transition structure. Strain in a four-membered ring was shown to be dependent on the metal identity (transition or main group/d or p block). For early transition metals, due to the presence of empty valence d orbitals, the strain is negligible but, for main group metals, the strain is significant and so destabilizes the corresponding transition structure. Our claim gains support from investigation of ethylene insertion into an M-allyl bond. In this case, the relevant insertion preferentially passes through a six-membered ring transition structure with an accessibly low activation barrier. In contrast to four-membered ring transition structures, six-membered ones do not suffer significantly from ring strain, causing the insertion activation barrier to become independent of the metal identity. It becomes obvious from our study that this previously undisclosed factor should play the pivotal role in determining the reactivity of many catalysts.

9.
Angew Chem Int Ed Engl ; 58(7): 2114-2119, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30451362

ABSTRACT

A synthesis of unconjugated (E)-enediynes from allenyl amino alcohols is reported and their gold-catalyzed cascade cycloaromatization to a broad range of enantioenriched substituted isoindolinones has been developed. Experimental and computational studies support the reaction proceeding via a dual-gold σ,π-activation mode, involving a key gold-vinylidene- and allenyl-gold-containing intermediate.

10.
Org Biomol Chem ; 16(46): 9021-9029, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30427044

ABSTRACT

The Nazarov cyclisation is an important and reliable reaction for the synthesis of cyclopentenones. Density functional theory (DFT) has been utilised to study the mechanism of Nazarov cyclisations initiated by oxidation of pentadienyl ethers by a benzoquinone derivative (DDQ), as recently reported by West et al. (Angew. Chem., Int. Ed., 2017, 56, 6335). We determined that the reaction is most likely initiated by a hydride transfer from the pentadienyl ether to an oxygen of DDQ through a concerted pathway and not a single electron transfer mechanism. This oxidation by hydride abstraction leads to the formation of a pentadienyl cation from which the 4π electrocyclisation occurs, giving an alkoxycyclopentenyl cation. The ensuing cation is subsequently deprotonated by the reduced DDQ to afford an enol ether product. Consistent with experimental results, the hydride transfer is calculated to be the rate determining step and it can be accelerated by using electron donating substituents on the pentadienyl ether substrate. Indeed, the electron donating substituents increase the HOMO energy of the ether, making it more reactive toward oxidation. It is predicted that an unsubstituted benzoquinone, due to having a higher lying LUMO, shows much less reactivity than DDQ. Interestingly, we found an excellent correlation between the hydride transfer activation energy and the gap between the ether HOMO and the benzoquinone LUMO. From this correlation, we propose a predictive formula for reactivity of different types of substrates in the corresponding reaction.

11.
Chem Commun (Camb) ; 54(74): 10491-10494, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30159577

ABSTRACT

A PtIV prodrug needs to be reduced to PtII by a biomolecule in order to show efficacy. Among biomolecules, those containing an l-Cys residue have the highest potential to be involved in reduction. Tautomerisation from HSCH2CH(NH3+)CO2- to the unusual zwitterion form -SCH2CH(NH3+)CO2H is the prerequisite for l-Cys to become a potent reductant at a low pH.


Subject(s)
Coordination Complexes/chemistry , Cysteine/chemistry , Methionine/chemistry , Organoplatinum Compounds/chemistry , Prodrugs/chemistry , Cystine/chemical synthesis , Hydrogen-Ion Concentration , Isomerism , Methionine/analogs & derivatives , Methionine/chemical synthesis , Models, Chemical , Oxidation-Reduction , Platinum/chemistry , Quantum Theory
12.
Chemistry ; 24(33): 8361-8368, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29655208

ABSTRACT

Density functional theory (DFT) was utilized to explore the reduction of gold(III) complexes by the amino acid glycine (Gly). Interestingly, when the nitrogen atom of Gly coordinates to the gold(III) center, its Cα -hydrogen atom becomes so acidic that it can be easily deprotonated by a mild base like water. The deprotonation converts the amino acid into a potent reductant by which gold(III) is reduced to gold(I) with a moderate activation energy. To our knowledge, this is the first contribution suggesting that primary amines are oxidized to imines via direct α-carbon deprotonation. This finding may provide new insights into the mechanistic interpretation of amine oxidations catalyzed/mediated by a center with high cathodic reduction potential. This work also provides a rationalization behind why gold(III) complexes with amine-based polydentate ligands are reluctant to undergo a redox process. Gold(III) reduction occurs most efficiently if the Cα proton leaves in the plane of the Cα , N and Au atoms. Chelation prevents this alignment, resulting in the gold(III) complex being unreactive toward reduction. It has been experimentally found that gold(III) is capable of oxidizing Gly to glyoxylic acid (GA) as the initial product. The latter, in the presence of another gold(III) complex, has been reported to undergo oxidative decarboxylation to afford CO2 and HCOOH. This process is found to be mediated by formation of a geminal diol intermediate produced by reaction of water with the aldehyde functional group of the coordinated GA.

13.
Dalton Trans ; 46(11): 3742-3748, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28262888

ABSTRACT

This report describes a computational study of C(sp3)-OR bond formation from PdIV complexes of general structure PdIV(CH2CMe2-o-C6H4-C,C')(F)(OR)(bpy-N,N') (bpy = 2,2'-bipyridine). Dissociation of -OR from the different octahedral PdIV starting materials results in a common square-pyramidal PdIV cation. An SN2-type attack by -OR (-OR = phenoxide, acetate, difluoroacetate, and nitrate) then leads to C(sp3)-OR bond formation. In contrast, when -OR = triflate, concerted C(sp3)-C(sp2) bond-forming reductive elimination takes place, and the calculations indicate this outcome is the result of thermodynamic rather than kinetic control. The energy requirements for the dissociation and SN2 steps with different -OR follow opposing trends. The SN2 transition states exhibit "PdCO" angles in a tight range of 151.5 to 153.0°, resulting from steric interactions between the oxygen atom and the gem-dimethyl group of the ligand. Conformational effects for various OR ligands and isomerisation of the complexes were also examined as components of the solution dynamics in these systems. In all cases, the trends observed computationally agree with those observed experimentally.

14.
J Am Chem Soc ; 138(44): 14599-14608, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27750414

ABSTRACT

The gold-catalyzed direct functionalization of aromatic C-H bonds has attracted interest for constructing organic compounds which have application in pharmaceuticals, agrochemicals, and other important fields. In the literature, two major mechanisms have been proposed for these catalytic reactions: inner-sphere syn-addition and outer-sphere anti-addition (Friedel-Crafts-type mechanism). In this article, the AuCl3-catalyzed hydrofurylation of allenyl ketone, vinyl ketone, ketone, and alcohol substrates is investigated with the aid of density functional theory calculations, and it is found that the corresponding functionalizations are best rationalized in terms of a novel mechanism called "concerted electrophilic ipso-substitution" (CEIS) in which the gold(III)-furyl σ-bond produced by furan auration acts as a nucleophile and attacks the protonated substrate via an outer-sphere mechanism. This unprecedented mechanism needs to be considered as an alternative plausible pathway for gold(III)-catalyzed arene functionalization reactions in future studies.

15.
J Phys Chem Lett ; 7(10): 1934-8, 2016 May 19.
Article in English | MEDLINE | ID: mdl-27193088

ABSTRACT

The rhenium dioxide anion [ReO2](-) reacts with carbon dioxide in a linear ion trap mass spectrometer to produce [ReO3](-) corresponding to activation and cleavage of a C-O bond. Isotope labeling experiments using [Re(18)O2](-) reveal that (18)O/(16)O scrambling does not occur prior to cleavage of the C-O bond. Density functional theory calculations were performed to examine the mechanism for this oxygen atom abstraction reaction. Because the spins of the ground states are different for the reactant and product ions ((3)[ReO2](-) versus (1)[ReO3](-)), both reaction surfaces were examined in detail and multiple [O2Re-CO2](-) intermediates and transition structures were located and minimum energy crossing points were calculated. The computational results show that the intermediate [O2Re(η(2)-C,O-CO2)](-) species most likely initiates C-O bond activation and cleavage. The stronger binding affinity of CO2 within this species and the greater instabilities of other [O2Re-CO2)](-) intermediates are significant enough that oxygen atom exchange is avoided.

16.
Dalton Trans ; 45(3): 1047-54, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26649949

ABSTRACT

A theoretical study into the reactions of the N2O adducts of N-heterocyclic carbenes (NHCs) and a V((III)) complex was carried out using DFT calculations. Unlike most transition metal reactions with N2O that simply release N2 following O-atom transfer onto the metal centre, this NHC-based system traps the entire N2O molecule and then cleaves both the N-O and N-N bond in two consecutive reactions. The NHC presence increases the reactivity of N2O by altering the distribution of electron density away from the O-atom towards the two N-atoms. This electronic redistribution enables V-N binding interactions to form a reactive N,O-donor intermediate species. Our results show that bond breaking with concomitant ligand migration occurs via a concerted process for both the N-O and N-N cleavage reactions.

17.
Inorg Chem ; 54(2): 534-43, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25559336

ABSTRACT

Cummins et al. have observed that 3 equiv of Mo(N[R]Ar)3 (R = C(CD3)2CH3, Ar = 3,5-C6H3Me2) are required for dual S═O bond cleavage within a SO2 molecule. Using density functional theory calculations, this theoretical study investigates a mechanism for this SO2 cleavage reaction that is mediated by MoL3, where L = NH2 or N[(t)Bu]Ph. Our results indicate that an electron transfers into the SO2 ligand, which leads to Mo oxidation and initiates SO2 coordination along the quartet surface. The antiferromagnetic (AF) nature of the (NH2)3Mo-SO2 adduct accelerates intersystem crossing onto the doublet surface. The first S═O bond cleavage occurs from the resulting doublet adduct and leads to formation of L3Mo═O and SO. Afterward, the released SO molecule is cleaved by the two remaining MoL3, resulting in formation of L3Mo═S and an additional L3Mo═O. This mononuclear mechanism is calculated to be strongly exothermic and proceeds via a small activation barrier, which is in accordance with experimental results. An additional investigation into a binuclear process for this SO2 cleavage reaction was also evaluated. Our results show that the binuclear mechanism is less favorable than that of the mononuclear mechanism.


Subject(s)
Molybdenum/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Sulfur Dioxide/chemistry , Electron Transport , Models, Molecular , Molecular Conformation , Quantum Theory
18.
J Org Chem ; 79(24): 12056-69, 2014 12 19.
Article in English | MEDLINE | ID: mdl-25329236

ABSTRACT

Gas-phase carbon-carbon bond forming reactions, catalyzed by group 10 metal acetate cations [(phen)M(O2CCH3)](+) (where M = Ni, Pd or Pt) formed via electrospray ionization of metal acetate complexes [(phen)M(O2CCH3)2], were examined using an ion trap mass spectrometer and density functional theory (DFT) calculations. In step 1 of the catalytic cycle, collision induced dissociation (CID) of [(phen)M(O2CCH3)](+) yields the organometallic complex, [(phen)M(CH3)](+), via decarboxylation. [(phen)M(CH3)](+) reacts with allyl acetate via three competing reactions, with reactivity orders (% reaction efficiencies) established via kinetic modeling. In step 2a, allylic alkylation occurs to give 1-butene and reform metal acetate, [(phen)M(O2CCH3)](+), with Ni (36%) > Pd (28%) > Pt (2%). Adduct formation, [(phen)M(C6H11O2)](+), occurs with Pt (24%) > Pd (21%) > Ni(11%). The major losses upon CID on the adduct, [(phen)M(C6H11O2)](+), are 1-butene for M = Ni and Pd and methane for Pt. Loss of methane only occurs for Pt (10%) to give [(phen)Pt(C5H7O2)](+). The sequences of steps 1 and 2a close a catalytic cycle for decarboxylative carbon-carbon bond coupling. DFT calculations suggest that carbon-carbon bond formation occurs via alkene insertion as the initial step for all three metals, without involving higher oxidation states for the metal centers.


Subject(s)
Acetates/chemistry , Allyl Compounds/chemistry , Coordination Complexes/chemistry , Catalysis , Decarboxylation , Molecular Structure , Nickel/chemistry , Oxidation-Reduction , Palladium/chemistry , Quantum Theory
19.
Organometallics ; 33(19): 5525-5534, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25328272

ABSTRACT

A combination of experimental and density functional theory (DFT) investigations suggests that the Cu-catalyzed fluorination of unsymmetrical diaryliodonium salts with general structure [Mes(Ar)I]+ in N,N'-dimethylformamide proceeds through a CuI/CuIII catalytic cycle. A low concentration of fluoride relative to combined iodonium reagent plus copper ensures that [Mes(Ar)I]+ is available as the reactive species for oxidative "Ar+" transfer to a CuI center containing one or two fluoride ligands. A series of different possible CuI active catalysts (containing fluoride, triflate, and DMF ligands) have been evaluated computationally, and all show low-energy pathways to fluorinated products. The oxidation of these CuI species by [Mes(Ar)I]+ to form cis-Ar(F)CuIII intermediates is proposed to be rate-limiting in all cases. Ar-F bond-forming reductive elimination from CuIII is computed to be very facile in all of the systems examined. The conclusions of the DFT experiments are supported by several experimental studies, including tests showing that CuI is formed rapidly under the reaction conditions and that the fluoride concentration strongly impacts the reaction yields/selectivities.

20.
J Am Chem Soc ; 136(23): 8237-42, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24884298

ABSTRACT

This article describes the high-yielding and selective oxidatively induced formation of ethane from mono-methyl palladium complexes. Mechanistic details of this reaction have been explored via both experiment and computation. On the basis of these studies, a mechanism involving methyl group transmetalation between Pd(II) and Pd(IV) interediates is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...