Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Anal Methods ; 16(5): 709-720, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38214144

ABSTRACT

Septic tanks treat wastewater of individual houses and small communities (up to 2000 people in Scotland) in rural and semi-urban areas and are understudied sources of surface water contamination. A multi-analyte methodology with solid phase extraction (SPE), ultra-sonic extraction, and direct injection sample preparation methods was developed to analyse a comprehensive range of emerging contaminants (ECs) including prescription and over-the-counter pharmaceuticals and related metabolites, natural and synthetic hormones, and other human wastewater marker compounds in septic tank influent and effluent, river water, suspended solids, and septic tank sludge by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The number of quantifiable compounds in each matrix varied from 68 in septic tank wastewater to 59 in sludge illustrating its applicability across a range of matrices. Method quantification limits were 2.9 × 10-5-1.2 µg L-1 in septic tank influent, effluent and river water, with ≤0.01 µg L-1 achieved for 60% of ECs in all three water matrices, and 0.080-49 µg kg-1 in sludge. The developed method was applied to a septic tank (292 population equivalents) and the receiving river in the North-East of Scotland. Across all samples analysed, 43 of 68 ECs were detected in at least one matrix, demonstrating the method's sensitivity. The effluent concentrations suggest limited removal of ECs in septic tanks and a potential impact to river water quality for some ECs. However, further monitoring is required to better appreciate this. The developed methodology for a wide variety of ECs in a range of liquid and solid phases will allow, for the first time, a comprehensive assessment of ECs fate and removal in septic tanks, and their impact to surface water quality.

2.
Sci Adv ; 9(44): eadh2584, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37910615

ABSTRACT

The γ-aminobutyric acid-mediated (GABAergic) system participates in many aspects of organismal physiology and disease, including proteostasis, neuronal dysfunction, and life-span extension. Many of these phenotypes are also regulated by reactive oxygen species (ROS), but the redox mechanisms linking the GABAergic system to these phenotypes are not well defined. Here, we report that GABAergic redox signaling cell nonautonomously activates many stress response pathways in Caenorhabditis elegans and enhances vulnerability to proteostasis disease in the absence of oxidative stress. Cell nonautonomous redox activation of the mitochondrial unfolded protein response (mitoUPR) proteostasis network requires UNC-49, a GABAA receptor that we show is activated by hydrogen peroxide. MitoUPR induction by a spinocerebellar ataxia type 3 (SCA3) C. elegans neurodegenerative disease model was similarly dependent on UNC-49 in C. elegans. These results demonstrate a multi-tissue paradigm for redox signaling in the GABAergic system that is transduced via a GABAA receptor to function in cell nonautonomous regulation of health, proteostasis, and disease.


Subject(s)
Caenorhabditis elegans Proteins , Neurodegenerative Diseases , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Oxidation-Reduction , Receptors, GABA-A/metabolism , Unfolded Protein Response
3.
Environ Pollut ; 309: 119752, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35841989

ABSTRACT

Contracting Parties to the OSPAR Convention for the Protection of the Maine Environment of the North-East Atlantic are required to undertake monitoring and assessment of both inorganic and organic contaminants. There is a requirement to assess contaminants across different trophic levels on an ecosystem-specific basis. However, this is currently constrained by the availability of relevant samples to cover the full range of trophic levels. This study investigates the variability (inter- and intra-species variation) of the concentrations and distributions of thirty-two polychlorinated biphenyl (PCB) congeners and nine polybrominated diphenyl ether (PBDE) congeners in twenty-six species covering four trophic levels from different geographic locations around Scotland. Trophic magnification factors (TMFs) were calculated using a traditional method and a balanced method for both the ICES-7 PCBs and BDE47, to refine and improve the application of TMFs to assess and predict biomagnification risk to biota in the marine environment. There were clear differences in congener percentage distribution between sample categories and species, with differences influenced by physiological processes and eco-biological parameters. Trophic magnification was found to occur for the ICES-7 PCBs and BDE47 using the traditional method, with the highest degree of trophic magnification reported for CB52. An unbalanced dataset was found to influence the calculated TMF and in some cases, the overall conclusion of the trophic transfer of PCB and PBDE congeners. The balanced method is highly recommended for calculating TMFs to ensure that the TMF is a true indication of the biomagnification potential, particularly when conducting regional comparisons for which sampling requirements are difficult to achieve.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Bioaccumulation , Ecosystem , Environmental Monitoring , Fishes , Food Chain , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis
4.
Sci Total Environ ; 831: 154912, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35364148

ABSTRACT

Microplastics (MPs) are present in all environments, and concerns over their possible detrimental effects on flora and fauna have arisen. Density separation (DS) is commonly used to separate MPs from soils to allow MP quantification; however, it frequently fails to extract high-density MPs sufficiently, resulting in under-estimation of MP abundances. In this proof-of-concept study, a novel three-stage extraction method was developed, involving high-gradient magnetic separation and removal of magnetic soil (Stage 1), magnetic tagging of MPs using surface modified iron nanoparticles (Stage 2), and high-gradient magnetic recovery of surface-modified MPs (Stage 3). The method was optimised for four different soil types (loam, high­carbon loamy sand, sandy loam and high-clay sandy loam) spiked with different MP types (polyethylene, polyethylene terephthalate, and polytetrafluoroethylene) of different particle sizes (63 µm to 2 mm) as well as polyethylene fibres (2-4 mm). The optimised method achieved average recoveries of 96% for fibres and 92% for particles in loam, 91% for fibres and 87% for particles in high­carbon loamy sand, 96% for fibres and 89% for particles in sandy loam, and 97% for fibres and 94% for particles in high-clay sandy loam. These were significantly higher than recoveries achieved by DS, particularly for fibres and high-density MPs (p < 0.05). To demonstrate the practical application of the HGMS method, it was applied to a farm soil sample, and high-density MP particles were only recovered by HGMS. Furthermore, this study showed that HGMS can recover fibre-aggregate complexes. This improved extraction method will provide better estimates of MP quantities in future studies focused on monitoring the prevalence of MPs in soils.


Subject(s)
Microplastics , Soil , Carbon , Clay , Magnetic Phenomena , Plastics , Polyethylene , Sand
5.
Polymers (Basel) ; 14(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35406328

ABSTRACT

Traditionally, the drilling waste generated in oil and gas exploration operations, including spent drilling fluid, is disposed of or treated by several methods, including burial pits, landfill sites and various thermal treatments. This study investigates drilling waste valorisation and its use as filler in polymer composites. The effect of the poor particle/polymer interfacial adhesion bonding of the suspended clay in oil-based mud (OBM) slurry and the LDPE matrix is believed to be the main reason behind the poor thermo-mechanical and mechanical properties of low-density polyethylene (LDPE)/OBM slurry nanocomposites. The thermo-mechanical and mechanical performances of LDPE)/OBM slurry nanocomposites without the clay surface treatment and without using compatibilizer are evaluated and discussed. In our previous studies, it has been observed that adding thermally treated reclaimed clay from OBM waste in powder form improves both the thermal and mechanical properties of LDPE nanocomposites. However, incorporating OBM clay in slurry form in the LDPE matrix can decrease the thermal stability remarkably, which was reported recently, and thereby has increased the interest to identify the mechanical response of the composite material after adding this filler. The results show the severe deterioration of the tensile and flexural properties of the LDPE/OBM slurry composites compared to those properties of the LDPE/MMT nanocomposites in this study. It is hypothesised, based on the observation of the different test results in this study, that this deterioration in the mechanical properties of the materials was associated with the poor Van der Waals force between the polymer molecules/clay platelets and the applied force. The decohesion between the matrix and OBM slurry nanoparticles under stress conditions generated stress concentration through the void area between the matrix and nanoparticles, resulting in sample failure. Interfacial adhesion bonding appears to be a key factor influencing the mechanical properties of the manufactured nanocomposite materials.

6.
Waste Manag ; 139: 362-380, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35026697

ABSTRACT

Operational discharges from oil and gas exploration industry, accidental spillage, or improperly disposed drilling wastes has serious detrimental effects on human and the environment. The water- and oil-based fluids wastes are generated every year all over the world and remain a serious challenge in compliance with the requirements of zero discharge for the oil and gas industry. To meet environmental regulations, sustainable and effective waste management is critical yet mostly missing in the oil and gas industry. This work aims to provide the current state of art in drilling waste (drill cuttings and drilling fluids). An overview of the drilling fluid waste is first provided followed by its characteristics, environmental concerned constituents in this waste stream are then explored while considering the current waste management efforts. Environmental and regulatory issues regarding drilling waste and the shortcomings of regulations are also discussed. The work sums up with a perspective future trends on drilling waste management, opportunities and challenges ahead including the potential for recycling and re-use of waste drilling fluids and cuttings for commercial products development. There are opportunities for waste valorisation especially in raw materials recovery for valuable products utilisation rather than incurring burden to the environment.


Subject(s)
Oil and Gas Industry , Waste Management , Recycling
7.
Mar Pollut Bull ; 173(Pt A): 112929, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34534935

ABSTRACT

To be able to assess progress towards "Good Environmental Status" adopted across European Member States, and by the United Kingdom through its 3-stage Marine Strategy, contaminant concentrations and their biological effects need to be assessed in environmental samples by comparison to assessment criteria. This study examines the variability of concentrations (inter- and intra- species variation) of three priority heavy metals (Hg, Cd and Pb) and six additional trace metals and metalloids (As, Ni, Se, Zn, Cu and Cr) in twenty-three species across four trophic levels from different locations around Scotland. Trophic magnification factors (TMFs) were calculated using two methods for metals/metalloids possessing a significant trophic relationship (Hg, Cd, Cu, Ni and Zn) to refine and improve the application of TMFs to assess and predict biomagnification risk of metals/metalloids to biota in the environment. It was concluded that a reasonable balance in sample numbers of lower- versus higher-trophic level organisms is highly recommended when calculating TMFs and appropriate species selection is vital to ensure TMFs accurately represent the selected ecosystem.


Subject(s)
Metalloids , Metals, Heavy , Water Pollutants, Chemical , Bioaccumulation , Ecosystem , Environmental Monitoring , Food Chain , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
8.
J Food Biochem ; 45(2): e13592, 2021 02.
Article in English | MEDLINE | ID: mdl-33349958

ABSTRACT

With increased longevity and subsequent rise in people with age-related neurodegenerative diseases, protection of neurons from oxidative stress damage has become an important field of study. For the first time, we highlight the neuroprotective properties of rapeseed pomace (RSP) extract in SH-SY5Y human neuroblastoma cells. We used resazurin to determine cell metabolism, 2,7'-dichlorofluorescin diacetate (H2 DCFDA) to assess the potential of RSP extracts to shield cells from reactive oxygen species (ROS) induced by H2 O2 using flow cytometry, HPLC to analyze for malondialdehyde (MDA) as a lipid peroxidation marker and the COMET assay to assess DNA strand breakage. Protein stress arrays were used to investigate the cellular pathways affected by RSP extract. No effect on cell metabolism in SH-SY5Y cells was observed after RSP extract treatment (up to 1.5 mg/ml). Pretreatment (24 hr) with RSP extract (1 mg/ml), before H2 O2 -induced stress, alleviated ROS production and DNA strand breakage by 68%, and 38%, respectively. At protein level, the RSP extract increased the levels of FABP-1, HIF-1α, SOD2, and Cytochrome c proteins. Under H2 O2 -induced stress, however, it helped to downregulate p38α levels, a protein kinase which is receptive to stress impulse (mitogen-activated). RSP extract shows very promising cell protective properties in relation to oxidative stress. PRACTICAL APPLICATIONS: Oxidative stress has been associated with numerous diseases for example cancer, diabetes, and many neurological disorders including Parkinson's and Alzheimer's diseases. Hence, there is acceptance among the scientific community of antioxidant therapy and the quest for effective, low cost and readily available sources of natural antioxidants is paramount. Rapeseed plantations are abundant around the world due to the use of rapeseed oil in cooking and as a biofuel. The resulting rapeseed pomace (by-product), specifically its extract, contains high levels of phytochemicals that protect cells against oxidative stress. Therefore, RSP extract can potentially be used/developed as functional food and nutraceuticals in the prevention of many complex neurodegenerative diseases.


Subject(s)
Brassica napus , Antioxidants/pharmacology , DNA Damage , Humans , Oxidative Stress , Plant Extracts/pharmacology
9.
Waste Manag Res ; 38(12): 1331-1344, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32720590

ABSTRACT

Oil-based mud (OBM) waste from the oil and gas exploration industry can be valorised to tailor-made reclaimed clay-reinforced low-density polyethylene (LDPE) nanocomposites. This study aims to fill the information gap in the literature and to provide opportunities to explore the effective recovery and recycling techniques of the resources present in the OBM waste stream. Elemental analysis using inductively coupled plasma-optical emission spectrometry (ICP-OES) and X-ray fluorescence analysis, chemical structural analysis by Fourier transform infrared (FTIR) spectroscopy, and morphological analysis of LDPE/organo-modified montmorillonite (LDPE/MMT) and LDPE/OBM slurry nanocomposites by scanning electron microscopy (SEM) have been conducted. Further analysis including calorimetry, thermogravimetry, spectroscopy, microscopy, energy dispersive X-ray analysis and X-ray diffraction (XRD) was carried out to evaluate the thermo-chemical characteristics of OBM waste and OBM clay-reinforced LDPE nanocomposites, confirming the presence of different clay minerals including inorganic salts in OBM slurry powder. The microscopic analysis revealed that the distance between polymer matrix and OBM slurry filler is less than that of MMT, which suggests better interfacial adhesion of OBM slurry compared with the adhesion between MMT and LDPE matrix. This was also confirmed by XRD analysis, which showed the superior delamination structure OBM slurry compared with the structure of MMT. There is a trend noticeable for both of these fillers that the nanocomposites with higher percentage filler contents (7.5 and 10.0 wt% in this case) were indicated to act as a thermal conductive material. The heat capacity values of nanocomposites decreased about 33% in LDPE with 7.5 wt% MMT and about 17% in LDPE with 10.0 wt% OBM slurry. It was also noted, for both nanocomposites, that the residue remaining after 1000°C increases with the incremental wt% of fillers in the nanocomposites. There is a big difference in residue amount (in %) left after thermogravimetric analysis in the two nanocomposites, indicating that OBM slurry may have significant influence in decomposing LDPE matrix; this might be an interesting area to explore in the future. The results provide insight and opportunity to manufacture waste-derived renewable nanocomposites with enhanced structural and thermal properties.


Subject(s)
Nanocomposites , Polyethylene , Bentonite , Gas Chromatography-Mass Spectrometry , X-Ray Diffraction
10.
Environ Pollut ; 262: 114364, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32443211

ABSTRACT

The importance of stereochemistry on the behaviour and effects of chiral pharmaceutical and illicit drugs in amended agricultural soils has been over looked to date. Therefore, this study was aimed at investigating the enantiospecific behaviour of a chemically diverse range of chiral drugs including naproxen, ibuprofen, salbutamol, bisoprolol, metoprolol, propranolol, acebutolol, atenolol, chlorpheniramine, amphetamine, fluoxetine and citalopram in soil microcosms. Considerable changes of the enantiomeric composition of ibuprofen, naproxen, atenolol, acebutolol and amphetamine were observed within 56 d. This is significant as enantiomer enrichment can favour the pharmacologically active (e.g., S(-)-atenolol) or less/non-active forms of the drug (e.g., R(-)-amphetamine). Single enantiomer microcosms showed enantiospecific degradation was responsible for enantiomer enrichment of atenolol and amphetamine. However, naproxen and ibuprofen enantiomers were subject to chiral inversion whereby one enantiomer converts to its antipode. Interestingly, chiral inversion was bidirectional and this is the first time it is reported in soil. Therefore, introduction of the less active enantiomer to soil through irrigation with reclaimed wastewater or biosolids as fertiliser can result in the formation of its active enantiomer, or vice versa. This phenomenon needs considered in risk assessment frameworks to avoid underestimating the risk posed by chiral drugs in amended soils.


Subject(s)
Illicit Drugs , Soil , Ibuprofen , Stereoisomerism , Wastewater
11.
Sci Total Environ ; 698: 134228, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31505364

ABSTRACT

Current and historic pesticide use has potential to compromise e.g. drinking water sources due to both primary and secondary emission sources. Understanding the spatial and temporal dynamics of emissions might help inform management decisions. To explore this potential; water, sediment and soil samples were concurrently collected from the River Ugie, Scotland over four seasons. Occurrence and fate of nine pesticides including four historic-use pesticides (HUPs): simazine, atrazine, isoproturon and permethrin, and five current-use pesticides (CUPs): metaldehyde, chlorpyrifos, chlortoluron, epoxiconazole and cypermethrin were analysed. Concentrations of target pesticides in water, sediments and soils were 4.5-45.6 ng·L-1, 0.9-4.6 ng·g-1 dw (dry weight) and 1.7-8.0 ng·g-1 dw, respectively. Concentrations of pesticides in water were found to significantly differ between seasons (p < 0.05). Significant differences in pesticide concentrations also occurred spatially within sediments (p < 0.01), indicating spatial and temporal associations with pesticide use. Sediment-water exchange showed that the sediment acts as an important secondary emission source particularly for the HUPs, while current local application and sediment emission are both major driving forces for CUPs in the riverine environment. These findings were supported by concentration ratios between different media, which showed potential as a preliminary assessment tool for identifying the source of pollutants in aquatic environments.

12.
Food Chem ; 276: 768-775, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30409660

ABSTRACT

Sinapine is the main secondary metabolite present in rapeseed pomace (RSP) with its concentration being dependent on rapeseed processing, growing conditions, extraction parameters and the country of origin. Here we report, the concentration of sinapine from an extract of defatted RSP harvested in the North East of Scotland. Using liquid chromatography tandem mass spectrometry, the most abundant phenolic compound in the RSP extract was, as expected, sinapine (109.1 mg/g RSP extract). Additionally, sinapic, caffeic, ferulic and syringic acids were identified (0.159-3.91 mg/g RSP extract). Sinapine together with the phenolics at the concentration present in the RSP extract, exhibited ≥50% activity relative to the extract in antioxidant assays. Furthermore, sinapine provided plasmid DNA (pBR322) protection, from 2,2'-azobis(2-amidinopropane) dihydrochloride and inhibited acetylcholinesterase activity by 85%. Molecular docking was utilised to explain the inhibitory activity. RSP can be an excellent source of bioactive compounds for pharmaceuticals, food additive and nutraceutical applications.


Subject(s)
Antioxidants/pharmacology , Brassica rapa/chemistry , Choline/analogs & derivatives , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Antioxidants/analysis , Choline/analysis , Choline/chemistry , Choline/pharmacology , Cholinesterase Inhibitors/analysis , Cholinesterase Inhibitors/pharmacology , Chromatography, Liquid , Gallic Acid/analogs & derivatives , Gallic Acid/analysis , Molecular Docking Simulation , Phenols/analysis , Plant Extracts/analysis , Plant Extracts/chemistry , Scotland , Tandem Mass Spectrometry
13.
J Chromatogr A ; 1572: 62-71, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30146377

ABSTRACT

Reported here is the first analytical methodology for the enantiomeric determination of chiral trace organic contaminants (TOrCs) in soil. Direct enantioselective separations were achieved on a Chirobiotic V2® column operated in polar ionic mode. Initial screening of vancomycin stationary phases found Chirobiotic V2® better suited for multi-residue separation of chiral TOrCs than Chirobiotic V® due to differences in the ligand linkage chemistry. Simultaneous enantioseparation of beta-blockers, beta-agonists, anti-depressants, anti-histamines and stimulants was achieved for the first time. This included the first separation of chlorpheniramine enantiomers with a method suitable for environmental analysis (i.e., coupled to MS). Investigation of mobile phase composition found the concentration of liophilic ions had the greatest influence on enantioseparations and of most importance during method development. The optimized method achieved simultaneous separation of salbutamol, propranolol, atenolol, amphetamine, chlorpheniramine and fluoxetine enantiomers with satisfactory resolution (>1.0). For completeness, such methods also need to support analysis of achiral TOrCs. Therefore three achiral TOrCs (carbamazepine, carbamazepine 10,11 epoxide and triclocarban) were included to demonstrate the methods suitability. Method recoveries for all analytes ranged from 76 to 122% with method quantitation limits (MQLs) <1 ng g-1. Application of the method to soil microcosm studies revealed stereoselective degradation of chiral TOrCs for the first time. For example, S(+)-amphetamine degraded at a faster rate than its corresponding enantiomer leading to an enrichment of R(-)-amphetamine. Therefore to better understand the risk posed from TOrCs on the terrestrial environment, chiral species need profiled at the enantiomeric level. This can now be addressed using the proposed methodology whilst simultaneously profiling achiral TOrCs.


Subject(s)
Chromatography, Liquid , Environmental Monitoring/methods , Soil Pollutants/analysis , Soil/chemistry , Tandem Mass Spectrometry , Amphetamine/analysis , Central Nervous System Stimulants/analysis , Fluoxetine/analysis , Solvents/chemistry , Stereoisomerism
14.
Anal Chim Acta ; 976: 14-24, 2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28576314

ABSTRACT

Most methods used in the identification of counterfeit whisky have focused on the profiling of volatile organic congeners determined by gas chromatography. We tested the use of total reflection x-ray fluorescence (TXRF) for trace element analysis of whisky and application of the data as a potential tool in the identification of counterfeit samples. Twenty five whiskies that were produced in different regions of Scotland or were blends, 5 counterfeit whiskies, 1 unmatured grain whisky, and 1 matured grain whisky were analysed for 11 elements (P, S, Cl, K, Ca, Mn, Fe, Cu, Zn, Br and Rb). The effect of cold plasma ashing with oxygen on whisky residues evaporated on the TXRF reflector on the instrument performance was investigated. Cold plasma ashing with oxygen reduced beam scatter and improved the limits of detection but was ultimately deemed unnecessary. The element concentration data for whisky obtained by TXRF (after log transformation) was compared with the values obtained by inductively coupled plasma spectroscopy and showed correlation values (R2) ≥ 0.942 for K, Mn and Cu: ≥ 0.800 for Ca, Fe and Rb; and ≥0.535 for P, S and Zn. The range of concentration values for individual elements was variable and principal components analysis of the elemental concentrations partially differentiated the whiskies by region or type but showed clear separation of the counterfeit samples from the other samples. Using the principal component scores of the elemental concentration data, linear discriminant analysis also distinguished the counterfeits from the other samples.


Subject(s)
Alcoholic Beverages/analysis , Spectrometry, X-Ray Emission , Trace Elements/analysis , Discriminant Analysis , Fluorescence , Multivariate Analysis
15.
Sci Total Environ ; 569-570: 1369-1379, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27425435

ABSTRACT

In many agricultural catchments of Europe and North America, pesticides occur at generally low concentrations with significant temporal variation. This poses several challenges for both monitoring and understanding ecological risks/impacts of these chemicals. This study aimed to compare the performance of passive and spot sampling strategies given the constraints of typical regulatory monitoring. Nine pesticides were investigated in a river currently undergoing regulatory monitoring (River Ugie, Scotland). Within this regulatory framework, spot and passive sampling were undertaken to understand spatiotemporal occurrence, mass loads and ecological risks. All the target pesticides were detected in water by both sampling strategies. Chlorotoluron was observed to be the dominant pesticide by both spot (maximum: 111.8ng/l, mean: 9.35ng/l) and passive sampling (maximum: 39.24ng/l, mean: 4.76ng/l). The annual pesticide loads were estimated to be 2735g and 1837g based on the spot and passive sampling data, respectively. The spatiotemporal trend suggested that agricultural activities were the primary source of the compounds with variability in loads explained in large by timing of pesticide applications and rainfall. The risk assessment showed chlorotoluron and chlorpyrifos posed the highest ecological risks with 23% of the chlorotoluron spot samples and 36% of the chlorpyrifos passive samples resulting in a Risk Quotient greater than 0.1. This suggests that mitigation measures might need to be taken to reduce the input of pesticides into the river. The overall comparison of the two sampling strategies supported the hypothesis that passive sampling tends to integrate the contaminants over a period of exposure and allows quantification of contamination at low concentration. The results suggested that within a regulatory monitoring context passive sampling was more suitable for flux estimation and risk assessment of trace contaminants which cannot be diagnosed by spot sampling and for determining if long-term average concentrations comply with specified standards.


Subject(s)
Environmental Monitoring/methods , Pesticides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/legislation & jurisprudence , Environmental Policy/legislation & jurisprudence , European Union , Government Regulation , Risk Assessment , Scotland
16.
Sci Total Environ ; 463-464: 988-96, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23872250

ABSTRACT

The use of a silicone rubber passive sampler for the assessment of the availability of lipophilic organic contaminants in sediments is described. The passive sampler accumulated polycyclic aromatic hydrocarbons (PAHs) from sediments with an equilibration time of 20 days for most PAHs. The method was used to measure the free dissolved concentrations in pore water of 30 PAHs (parent and alkylated), their water exchangeable concentrations and sediment-water partition coefficients in field sediments from a Scottish sea loch that supports fish farming. Fluoranthene and pyrene dominated the PAH concentration composition in the pore waters. The water exchangeable concentration reflected the pyrogenic pollution pattern found in the sediments and indicated that a proportion of the PAHs were not available for exchange with the aqueous phase. Strong linear relationships between organic carbon normalised sediment-water partition coefficients (logK(oc)) and corresponding octanol-water partition coefficients of PAHs were obtained. The logK(oc) values obtained are on average, 0.6 log units higher than literature values commonly used in sediment risk assessments, consequently direct measurements of logK(oc) in field sediments should be used to improve the reliability of risk assessments.

17.
Environ Pollut ; 159(12): 3351-6, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21906858

ABSTRACT

The availability of polycyclic aromatic hydrocarbons (PAHs) from marine sediments to the ragworm (Nereis virens) was studied. Concentrations of PAHs in pore waters were determined using silicone rubber passive samplers. Calculated bioconcentration factors confirmed that partitioning of PAHs between the lipid phase of the polychaetes and pore water is a passive process. Low biota-sediment accumulation factors (BSAF) calculated using total sediment concentration suggested a fraction of the total PAH burden in the sediment may be strongly sorbed to organic carbon and not available to the polychaete. Organic carbon normalised concentrations of the potentially exchangeable fractions of contaminants and freely dissolved concentrations (measured using silicone rubber samplers) provide a better description of the observed bioaccumulation by the ragworms. These data indicate that the concept of availability should be included in environmental risk assessments based upon equilibrium partitioning models, and that silicone rubber samplers can provide the necessary information for these models.


Subject(s)
Environmental Monitoring/instrumentation , Geologic Sediments/analysis , Polychaeta/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring/methods , Polychaeta/drug effects , Polychaeta/growth & development , Polycyclic Aromatic Hydrocarbons/analysis , Silicone Elastomers , Water Pollutants, Chemical/analysis
18.
J Environ Monit ; 9(10): 1116-21, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17909646

ABSTRACT

Silicone rubber sheeting can be used as a passive sampling device for hydrophobic organic contaminants in the environment to determine the available concentrations in water and sediments. Reliable sampler-water partition coefficients are required to determine the sampling rates and the dissolved contaminant concentrations in water and in sediment pore water. Log partition coefficients (logK(sr,w)) for silicone rubber-water have been estimated for 32 polycyclic aromatic hydrocarbons (PAHs), 2 deuterated PAH analogues and 32 chlorobiphenyls (CBs) using the cosolvent method, with methanol as cosolvent. Strong linear relationships were found with literature values for the corresponding log octanol-water partition coefficients (logK(ow)) for both CBs and PAHs, confirming that partitioning into the silicone rubber is strongly determined by the hydrophobicity of the compounds, which suggests logK(ow) is a good predictor of logK(sr,w) and that absorption is the main mechanism for accumulation of analytes into the silicone rubber polymer.


Subject(s)
Silicone Elastomers/chemistry , Solvents/chemistry , Hydrophobic and Hydrophilic Interactions , Polycyclic Aromatic Hydrocarbons/chemistry , Reference Standards , Regression Analysis , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...