Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 621: 444-452, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29190567

ABSTRACT

Soil fumigation is an important agricultural practice used to produce many vegetable and fruit crops. However, fumigating soil can lead to atmospheric emissions which can increase risks to human and environmental health. A complete understanding of the transport, fate, and emissions of fumigants as impacted by soil and environmental processes is needed to mitigate atmospheric emissions. Five large-scale field experiments were conducted to measure emission rates for 1,3-dichloropropene (1,3-D), a soil fumigant commonly used in California. Numerical simulations of these experiments were conducted in predictive mode (i.e., no calibration) to determine if simulation could be used as a substitute for field experimentation to obtain information needed by regulators. The results show that the magnitude of the volatilization rate and the total emissions could be adequately predicted for these experiments, with the exception of a scenario where the field was periodically irrigated after fumigation. In addition, the timing of the daily peak 1,3-D emissions was not accurately predicted for these experiments due to the peak emission rates occurring during the night or early-morning hours. This study revealed that more comprehensive mathematical models (or adjustments to existing models) are needed to fully describe emissions of soil fumigants from field soils under typical agronomic conditions.

2.
Sci Total Environ ; 580: 316-323, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28012657

ABSTRACT

Soil fumigation is important for food production but has the potential to discharge toxic chemicals into the environment, which may adversely affect human and ecosystem health. A field experiment was conducted to evaluate the effect of applying ammonium thiosulfate fertilizer to the soil surface prior to fumigating with 1,3-dichloropropene (1,3-D). The ammonium thiosulfate solution was applied as a spray with minimal water to minimize the effect on emissions from saturating (e.g. sealing) the soil pores with water. Two independent data sets were collected for determining the emission rate. One data set was used with three micrometeorological approaches: aerodynamic, integrated horizontal flux and theoretical profile shape; the other dataset with two indirect, back calculation methods that used the CALPUFF and ISCST3 dispersion models. Using the five methodologies, the 1,3-D emission rate was obtained for 16days. The maximum emission rates ranged from 7 to 20µgm-2s-1, the maximum 24-hour averaged emission rates ranged from 5 to 13µgm-2s-1, and the total 1,3-D emissions ranged from 12 to 26%. Comparing to fumigation without ammonium thiosulfate spray revealed that emissions were reduced from 3% (CALPUFF) to 29% (ADM). Using a simulation model, ammonium thiosulfate spray would be expected to reduce emissions by almost 21%. These data provide evidence that emissions of 1,3-D can be reduced by spraying ammonium thiosulfate fertilizer on the soil surface prior to soil fumigation, and provides another emission-reduction strategy to those recently reported (e.g., deep injection, water seals and organic amendments).

3.
J Environ Qual ; 40(5): 1347-58, 2011.
Article in English | MEDLINE | ID: mdl-21869496

ABSTRACT

The impact of agriculture on regional air quality creates significant challenges to sustainability of food supplies and to the quality of national resources. Agricultural emissions to the atmosphere can lead to many nuisances, such as smog, haze, or offensive odors. They can also create more serious effects on human or environmental health, such as those posed by pesticides and other toxic industrial pollutants. It is recognized that deterioration of the atmosphere is undesirable, but the short- and long-term impacts of specific agricultural activities on air quality are not well known or understood. These concerns led to the organization of the 2009 American Chemical Society Symposium titled . An outcome of this symposium is this special collection of 14 research papers focusing on various issues associated with production agriculture and its effect on air quality. Topics included emissions from animal feeding operations, odors, volatile organic compounds, pesticides, mitigation, modeling, and risk assessment. These papers provide new research insights, identify gaps in current knowledge, and recommend important future research directions. As the scientific community gains a better understanding of the relationships between anthropogenic activities and their effects on environmental systems, technological advances should enable a reduction in adverse consequences on the environment.


Subject(s)
Agriculture , Air Pollutants , Atmosphere
4.
J Environ Qual ; 40(5): 1443-9, 2011.
Article in English | MEDLINE | ID: mdl-21869506

ABSTRACT

Understanding the control mechanisms of fumigant movement in soil is a fundamental step for developing management strategies to reduce atmospheric emissions. Most soil fumigants including chloropicrin (CP) are applied by shank injection, and the application process often leaves vertical soil fractures that would potentially cause preferential fumigant movement and increased emissions. This potential transport pathway was evaluated by comparing cumulative emissions and soil air concentrations of CP from direct field measurements with those predicted using analytical and numerical models after assuming either point or rectangle sources for the injected CP. Results clearly showed that shank-injected CP, when treated as vertical rectangle sources, produced cumulative emission losses similar to the field measurements. Treating the shanked CP as point sources caused approximately 50% underprediction than the field measurements. The study also demonstrated that fumigant cumulative emissions can be predicted, with reasonable accuracy, using either analytical or numerical simulations.


Subject(s)
Fumigation/methods , Hydrocarbons, Chlorinated/analysis , Models, Theoretical , Soil Microbiology , Soil
5.
J Environ Qual ; 40(5): 1470-9, 2011.
Article in English | MEDLINE | ID: mdl-21869509

ABSTRACT

Soil fumigation is important for growing many fruits and vegetable crops, but fumigant emissions may contaminate the atmosphere. A large-scale field experiment was initiated to test the hypothesis that adding composted municipal green waste to the soil surface in an agricultural field would reduce atmospheric emissions of the 1,3-dichloropropene (1,3-D) after shank injection at a 133 kg ha(-1) application rate. Three micrometeorological methods were used to obtain fumigant flux density and cumulative emission values. The volatilization rate was measured continuously for 16 d, and the daily peak volatilization rates for the three methods ranged from 12 to 24 µg m(-2) s(-1). The total 1,3-D mass that volatilized to the atmosphere was approximately 14 to 68 kg, or 3 to 8% of the applied active ingredient. This represents an approximately 75 to 90% reduction in the total emissions compared with other recent field, field-plot, and laboratory studies. Significant reductions in the volatilization of 1,3-D may be possible when composted municipal green waste is applied to an agricultural field. This methodology also provides a beneficial use and disposal mechanism for composted vegetative material.


Subject(s)
Allyl Compounds/analysis , Fumigation/methods , Chromatography, Gas , Hydrocarbons, Chlorinated , Limit of Detection , Meteorology , Soil/chemistry , Volatilization
6.
Environ Sci Technol ; 45(4): 1384-90, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21214237

ABSTRACT

Methyl iodide (MeI) is increasingly being used as a highly effective alternative to the soil fumigant methyl bromide. Due to its volatile and toxic nature, MeI draws wide attention on its potential atmospheric emission following field fumigation treatment. Using soil columns that make it possible to determine emissions and gas phase distribution of soil fumigants, we studied MeI behavior in two soils differing in organic matter content. Additionally, the effectiveness of surface irrigation and tarping with virtually impermeable film (VIF) was assessed. In the lower organic matter, bare soil (control), emissions of MeI were rapid and high (83% of total). Although the peak emission flux was reduced by irrigation, the total loss was very similar to the control (82%). Tarping with VIF dramatically reduced emissions (0.04% total emissions). In the higher organic matter soil, degradation rate of MeI was increased around 4-fold, leading to a significant reduction in emissions (63% total emissions). The work suggests that surface tarping with VIF would be highly effective as an emissions reduction strategy and would also result in the maintenance of high soil gas concentrations (important for pest control). Ripping of the tarp after two weeks led to an immediate spike release of MeI, but, even so, the flux rate at this time was almost 20 times lower than the peak flux rate in the control. Even with tarp ripping, the total emission loss from the VIF treatment remained low (6%).


Subject(s)
Air Pollutants/chemistry , Hydrocarbons, Iodinated/chemistry , Agriculture/methods , Air Pollutants/analysis , Fumigation/methods , Hydrocarbons, Iodinated/analysis , Pest Control , Pesticides/analysis , Pesticides/chemistry , Soil , Soil Pollutants/analysis , Soil Pollutants/chemistry , Volatilization
7.
Environ Sci Technol ; 44(15): 5793-8, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20597537

ABSTRACT

Using laboratory soil chambers a nonscaled representation of an agricultural raised bed was constructed. For a sandy loam soil, 1,3-dichloropropene (1,3-D) and chloropicrin (CP) were applied at 5 cm depth with an excess of water (simulated drip irrigation). Application was made under both high density polyethylene (HDPE) and virtually impermeable film (VIF) covering the soil bed (the furrow was left uncovered). Soil gas distribution of the fumigants, together with emissions into the headspace above the bed, sidewall and furrow were determined over time. Total emissions from the HDPE treatment were cis 1,3-D 28%, trans 1,3-D 24%, and CP 8%. Due to its lower permeability, the values for VIF were 13%, 7%, and 1.5%, respectively. With HDPE, the majority (86-93%) of the emissions occurred from the bed, while for VIF the majority (92-99%) of the emissions was from the furrow. Compared to a range of literature values for shank injection, the use of drip application appears to offer a benefit in reducing 1,3-D and CP emissions. However, the most meaningful comparison is with our previous data for simulated shank injection where the same soil was covered (completely) with the same plastic films (1). In this comparison, only 1,3-D emissions under HDPE were lower with drip application; 1,3-D emissions under VIF and CP emissions under both films were greater with the drip application.


Subject(s)
Air Pollutants/analysis , Allyl Compounds/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Polyethylene/chemistry , Agriculture , Air Pollution/prevention & control , Fumigation
8.
Environ Sci Technol ; 43(13): 5073-8, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19673309

ABSTRACT

With the increased use of the agricultural fumigants 1,3-dichloropropene (1,3-D) and chloropicrin (CP), it is important that strategies to reduce emissions of these fumigant from soil to the air are assessed to protect air quality. Using an established soil column approach, the following emission reduction strategies were compared to a control: (1) spray application of ammonium thiosulfate to the soil surface; (2) deep injection at 46 cm depth; (3) high density polyethylene sealed over the soil surface; (4) virtually impermeable film sealed over the soil surface; and (5) irrigation with ammonium thiosulfate solution. Relative to the control, 1,3-D emissions were reduced by 26.1, 1.0, 0.01, 94.2, and 42.5%, for treatments 1 through 5, respectively. For CP the reductions were 41.6, 23.3, 94.6, 99.9, and 87.5% for treatments 1 through 5, respectively. Virtually impermeable film gave the greatest reductions for both fumigants, while HDPE was very effective only for CP. Despite offering less significant emission reductions, the lower cost alternatives to tarping, particularly irrigation with ATS solution, may offer substantial benefitwhere tarping is not economically viable.


Subject(s)
Air Pollutants/analysis , Allyl Compounds/analysis , Environmental Monitoring/methods , Fumigation , Hydrocarbons, Chlorinated/analysis , Water Pollutants, Chemical/analysis , Agriculture , Environmental Restoration and Remediation , Soil , Soil Pollutants/analysis , Thiosulfates/chemistry
9.
J Environ Qual ; 38(1): 164-70, 2009.
Article in English | MEDLINE | ID: mdl-19141806

ABSTRACT

Rice paddy soils undergo several cycles of drying and wetting during a growing season. A laboratory study was conducted to determine the effect of soil moisture conditions on the distribution and kinetics of extractable and bound residues of 14C-metsulfuron-methyl in six Chinese paddy soils during 84 d of incubation at 15 degrees C with moisture contents varying from 20 to 50% of the field water-holding capacity. The amount of extractable residues consistently increased and bound residues decreased with increasing soil moisture content. At the end of the incubation experiments, extractable residues and bound residues accounted for 34.5 to 84.4% and 11.6 to 53.3% of applied radioactivity in soils, respectively. Soil pH and soil microbial biomass carbon were the most predominant factors affecting the formation and relative distribution of herbicide residues between extractable and bound residue forms. In high-pH soils, bound residues decreased and extractable residues increased, suggesting an increased leaching risk for metsulfuron-methyl in alkaline soils. High precipitation rates, along with the common practice of liming in southeastern China, may lead to enhanced herbicide leaching as well as phytotoxicity to rotation plants and should be considered in overall pest management practices.


Subject(s)
Arylsulfonates/chemistry , Herbicides/chemistry , Soil/analysis , Water/analysis , Arylsulfonates/analysis , Carbon Radioisotopes/analysis , Herbicides/analysis , Kinetics , Oryza
10.
J Environ Qual ; 38(1): 259-67, 2009.
Article in English | MEDLINE | ID: mdl-19141816

ABSTRACT

An analytical solution describing the fate and transport of pesticides applied to soils has been developed. Two pesticide application methods can be simulated: point-source applications, such as idealized shank or a hot-gas injection method, and a more realistic shank-source application method that includes a vertical pesticide distribution in the soil domain due to a soil fracture caused by a shank. The solutions allow determination of the volatilization rate and other information that could be important for understanding fumigant movement and in the development of regulatory permitting conditions. The solutions can be used to characterize differences in emissions relative to changes in the soil degradation rate, surface barrier conditions, application depth, and soil packing. In some cases, simple algebraic expressions are provided that can be used to obtain the total emissions and total soil degradation. The solutions provide a consistent methodology for determining the total emissions and can be used with other information, such as field and laboratory experimental data, to support the development of fumigant regulations. The uses of the models are illustrated by several examples.


Subject(s)
Models, Chemical , Pesticides/chemistry , Soil Pollutants/chemistry , Agriculture , Fumigation , Time Factors , Volatilization
11.
Environ Sci Technol ; 42(23): 8753-8, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-19192793

ABSTRACT

A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.


Subject(s)
Allyl Compounds/analysis , Water/chemistry , Gases/chemistry , Hydrocarbons, Chlorinated , Soil , Surface Properties , Temperature , Time Factors , Volatilization , Wind
12.
Environ Sci Technol ; 41(7): 2231-6, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17438768

ABSTRACT

Low-cost, practicable techniques are required to limit the release of volatile organic compound-containing fumigants such as 1,3-D to the atmosphere. In this study, we aimed to quantify 1,3-D diffusion and emission from laboratory soil columns maintained under realistic conditions and thereby assess the efficacy of soil irrigation as a technique for reducing emissions. In two soils (one relatively high, and one relatively low, in organic matter), irrigation led to a limiting of upward diffusion of the fumigant and to the maintenance of higher soil gas concentrations. Therefore, rather than being emitted from the column, the 1,3-D was maintained in the soil where it was ultimately degraded. As a consequence, emission of 1,3-D from the irrigated columns was around half of thatfrom the nonirrigated columns. It is concluded that surface irrigation represents an effective, low-cost, and readily practicable approach to lessening the environmental impact of 1,3-D fumigant use. In addition, the higher organic matter soil exhibited emissions of around one-fifth of the lower organic matter soil in both irrigated and nonirrigated treatments, due to markedly enhanced degradation of the fumigant. Organic matter amendment of soils may, therefore, also represent an extremely effective, relatively low-cost approach to reducing 1,3-D emissions.


Subject(s)
Allyl Compounds/analysis , Environmental Pollution/prevention & control , Fresh Water/chemistry , Soil Pollutants/analysis , Soil/analysis , Agriculture/methods , Allyl Compounds/chemistry , California , Chromatography, Gas , Hydrocarbons, Chlorinated , Soil Pollutants/chemistry , Temperature , Volatilization
13.
Environ Sci Technol ; 40(22): 6963-8, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17154002

ABSTRACT

A numerical model that simulates pesticide fate was developed to predictthe behavior of triallate after application to a field soil. The model has options that allow water and/ or heat transport and can limit simulated aqueous-phase concentrations to triallate solubility in water. Several methods for describing the volatilization boundary condition were tested to assess the accuracy in predicting the volatilization rate, including an approach that requires no atmospheric information and an approach that couples soil and atmospheric processes. Four scenarios were constructed and simulated, to compare with measured volatilization rates. The peak measured volatilization rate (168 g ha(-1) h(-1)) was most accurately predicted with the scenario that included the most complex model (100 g ha(-1) h(-1)). The simplest model overpredicted the peak rate (251 g ha(-1) h(-1)), and the others underpredicted the peak rate (16-67 g ha(-1) h(-1)). The simulations that limited aqueous solubility provided relatively similar values for the total emissions (21-37% of applied triallate), indicating that simplified models may compare well with measurements (31% of applied). A prospective simulation over a period of 100 days showed that applying triallate to the soil surface would ultimately lead to atmospheric emissions of 80% of the applied material with 6% remaining in soil. Incorporating triallate to a depth of 10 cm would reduce emissions to less than 5% and lead to 41% remaining in soil.


Subject(s)
Air Pollution , Herbicides , Models, Chemical , Soil Pollutants , Atmosphere , Computer Simulation , Hot Temperature , Solubility , Triallate , Volatilization , Water
14.
J Environ Qual ; 35(6): 2162-9, 2006.
Article in English | MEDLINE | ID: mdl-17071885

ABSTRACT

Sulfadimethoxine is a widely used sulfonamide veterinary antibiotic and could be a source of agricultural contamination. Therefore, information is needed about its degradation kinetics in manure under aerobic conditions. Based on the analysis of first-order kinetics and the assumption that sulfadimethoxine availability for degradation in manure could be limiting, a new kinetic model was developed and was found to fit the degradation kinetics well. The degradation rate in sterile manure was found to be much lower than in nonsterile manure, indicating that biodegradation was significant. In biologically active manure, the degradation rate constant decreased with increasing initial concentration of sulfadimethoxine, implying that the activity of the degrading microorganisms was inhibited. Increasing moisture or temperature was found to increase sulfadimethoxine degradation in manure. Mixing manure containing high levels of sulfadimethoxine with manure containing lower levels may result in more rapid degradation, thus greatly diminishing sulfadimethoxine contamination in manure and significantly reducing sulfadimethoxine inputs into the environment. During treatment, keeping the manure moist and storing in a moderately warm place under aerobic conditions may also help to diminish sulfadimethoxine contamination.


Subject(s)
Agriculture , Humidity , Manure , Sulfadimethoxine/metabolism , Water Pollutants, Chemical/metabolism , Aerobiosis , Animals , Animals, Domestic , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/metabolism , Biodegradation, Environmental , Biotransformation , Kinetics , Sulfadimethoxine/analysis , Temperature , Water Movements , Water Pollutants, Chemical/analysis
15.
J Agric Food Chem ; 54(15): 5503-8, 2006 Jul 26.
Article in English | MEDLINE | ID: mdl-16848538

ABSTRACT

Halogenated fumigants are among the most heavily used pesticides in agriculture. Because of their high mobility and toxicological characteristics, the contamination of air or groundwater by these compounds has been a great environmental concern. In this study, we investigated dehalogenation of several halogenated fumigants by polysulfides. The reaction of polysulfides and methyl iodide (MeI), 1,3-dichloropropene (1,3-D), and chloropicrin (CP) was very rapid. When the initial fumigant and polysulfide concentrations were both 0.2 mM, the observed 50% disappearance time values (DT50) of MeI, cis-1,3-D, and trans-1,3-D were 27.2, 29.6, and 102 h, respectively. When the initial polysulfide concentration was 1.0 mM, the corresponding DT50 values were only 2.2, 1.6, and 3.8 h. Under similar conditions, the reaction with CP was even more rapid than with the other fumigants. In 0.2 mM polysulfide solution, more than 90% of the spiked CP disappeared in 1 h after the initiation of the reaction. The reaction between fumigants and polysulfides also progressed at enhanced rates when the polysulfide solution was initially purged with nitrogen. Analysis of reaction kinetics and initial products suggests that the reaction is SN2 nucleophilic substitution for MeI and 1,3-D but likely reductive dehalogenation for CP. Given the high reactivity of polysulfide salts toward halogenated fumigants, this reaction may be used as a pollution mitigation strategy, such as for disposal of fumigant wastes, treatment of fumigant-containing wastewater, and cleanup of fumigant residues in environmental media.


Subject(s)
Halogens/chemistry , Pesticides/chemistry , Sulfides/chemistry , Allyl Compounds/chemistry , Drug Stability , Fumigation , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Iodinated/chemistry , Kinetics , Solutions
16.
Environ Sci Technol ; 40(10): 3223-8, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16749685

ABSTRACT

A field experiment was conducted to measure surface dissipation and volatilization of the herbicide triallate after application to bare soil using micrometeorological, chamber, and soil-loss methods. The volatilization rate was measured continuously for 6.5 days and the range in the daily peak values for the integrated horizontal flux method was from 32.4 (day 5) to 235.2 g ha(-1) d(-1) (day 1), for the theoretical profile shape method was from 31.5 to 213.0 g ha(-1) d(-1), and for the flux chamber was from 15.7 to 47.8 g ha(-1) d(-1). Soil samples were taken within 30 min after application and the measured mass of triallate was 8.75 kg ha(-1). The measured triallate mass in the soil at the end of the experiment was approximately 6 kg ha(-1). The triallate dissipation rate, obtained by soil sampling, was approximately 334 g ha(-1) d(-1) (98 g d(-1)) and the average rate of volatilization was 361 g ha(-1) d(-1). Soil sampling at the end of the experiment showed that approximately 31% (0.803 kg/2.56 kg) of the triallate mass was lost from the soil. Significant volatilization of triallate is possible when applied directly to the soil surface without incorporation.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Herbicides/analysis , Soil Pollutants/analysis , Soil/analysis , Air Movements , Air Pollutants/chemistry , Herbicides/chemistry , Temperature , Time Factors , Triallate/analysis , Triallate/chemistry , Volatilization , Wind
17.
J Environ Qual ; 32(5): 1915-21, 2003.
Article in English | MEDLINE | ID: mdl-14535338

ABSTRACT

The goal of this research was to provide information for choosing appropriate materials for studying gas-phase concentrations of propargyl bromide (3BP) and 1,3-dichloropropene (1,3-D) in laboratory experiments. Several materials were tested and found to sorb both gas-phase chemicals in the following order: stainless steel (SS) < Teflon polytetrafluoroethylene (PTFE-FEP) approximately flexible polyvinyl chloride (PVC) approximately acrylic < low-density polyethylene (PE) < vinyl approximately silicone < polyurethane foam (PUF). Sorption of SS was insignificant and PUF sorbed all the fumigant that was applied. For the other materials, linear sorption coefficients (Kd) for 3BP ranged from 3.0 cm3 g(-1) for PVC to 215 cm3 g(-1) for silicone. Freundlich sorption coefficients for 1,3-D ranged from 11.5 to 371 cm3 g(-1). First-order desorption rate constants in an open system ranged from 0.05 to 1.38 h(-1) for 3BP and from 0.07 to 1.73 h(-1) for 1,3-D. In a closed system, less than 2% of sorbed fumigant desorbed from vinyl while up to 99% desorbed from PVC within 24 h when equilibrated at the highest headspace concentration. Sorption of both fumigants was linearly related to the square root of time except for vinyl and silicone. This may indicate non-fickian diffusion of fumigant into the polymer matrix. Vinyl, silicone, PE, and PUF should be avoided for quantitative study of organic gases, except possibly as a trapping medium. Use of PTFE, PVC, and acrylic may require correction for sorption-desorption and diffusion.


Subject(s)
Allyl Compounds/chemistry , Insecticides/chemistry , Models, Theoretical , Pargyline/analogs & derivatives , Pargyline/chemistry , Plastics/chemistry , Adsorption , Allyl Compounds/analysis , Diffusion , Hydrocarbons, Chlorinated , Insecticides/analysis , Pargyline/analysis , Volatilization
18.
J Environ Qual ; 31(4): 1079-87, 2002.
Article in English | MEDLINE | ID: mdl-12175024

ABSTRACT

There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br-) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Pargyline/analogs & derivatives , Pesticides/analysis , Soil Pollutants/analysis , Agriculture , Chromatography, Gas , Pargyline/analysis , Pargyline/chemistry , Volatilization
19.
J Environ Qual ; 31(3): 889-95, 2002.
Article in English | MEDLINE | ID: mdl-12026092

ABSTRACT

Golf course putting greens typically receive high pesticide applications to meet high quality demands. Research on pesticide fate in turf ecosystems is important to better understand the potential impact of pesticide use on the environment and human health. This research was conducted to evaluate the environmental fate of two commonly used insecticides--trichlorfon (dimethyl 2,2,2-trichloro-1-hydroxyethylphosphonate) and chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridylphosphorothioate)--in a creeping bentgrass (Agrostis palustris Huds.) putting green under customary field management practices at the University of California-Riverside Turf Research Facility during 1996 and 1997. The two insecticides were chosen because of their difference in water solubility, persistence, adsorption, and vapor pressure. Volatilization, clipping removal, and soil residues of the insecticides were quantified and leaching was monitored using lysimeters installed in putting green plots. Results showed trichlorfon volatilization, clipping removal, and leaching loss was insignificant (in the range of 0.0001-0.06% of applied mass) both in 1996 and 1997. No significant difference in clipping removal of trichlorfon and chlorpyrifos was observed in both years (0.06 and 0.05% of applied mass for trichlorfon and 0.15 and 0.19% of applied mass for chlorpyrifos, respectively, in 1996 and 1997), but significantly lower cumulative leaching and lower soil concentration was observed in 1997 than in 1996. Volatilization loss of chlorpyrifos was not significantly different between 1996 (2.05%) and 1997 (2.71%). Volatilization loss of trichlorfon in 1996 (0.01%) was significantly higher than in 1997 (0.008%). This study demonstrated the fraction of applied insecticides leaving the turf putting greens was minimal.


Subject(s)
Chlorpyrifos/pharmacology , Pesticide Residues/chemistry , Poaceae/metabolism , Soil Pollutants/pharmacology , Trichlorfon/pharmacology , California , Chlorpyrifos/chemistry , Golf , Humans , Insecticides/chemistry , Insecticides/pharmacology , Plant Leaves , Soil Pollutants/analysis , Trichlorfon/chemistry , Volatilization/drug effects
20.
Pest Manag Sci ; 58(4): 335-42, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11975181

ABSTRACT

Putting greens usually receive high inputs of fertilizers and pesticides to meet the high demand for visual quality and to overcome the stress from close mowing and traffic. In this study, two commonly used fungicides, metalaxyl (methyl N-(methoxyacetyl)-N-(2,6-xylyl)-DL-alaninate) and chlorothalonil (2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile), were evaluated for their partitioning and persistence in a bentgrass (Agrostis palustris Huds) putting green under southern California climatic conditions. The putting green site was constructed according to the US Golf Association (USGA) specifications. Lysimeter assemblies installed at the center of each plot were used to monitor the leachate, flux chambers were used to measure volatilization, clippings were collected to determine the residues on grass, and soil cores were sampled to determine residues in the soil profile. Results showed that cumulative volatilization loss accounted for 0.10 and 0.02%, clipping removal 0.11 and 0.13%, and cumulative leaching 0.71 and 0.002% of the applied metalaxyl and chlorothalonil, respectively. The two fungicides were mainly found in the top 10 cm of the soil profile due to the high organic carbon content in the thatch and mat layers. The dissipation half-life was 1.4 days for metalaxyl and 4.9 days for chlorothalonil on grass, shorter than those found in agricultural fields. This study showed that, under normal turf management practices, the offsite transport of the parent fungicides was minimal. Future research should focus on investigating the fate and mobility of the metabolites of the fungicides.


Subject(s)
Alanine/analogs & derivatives , Alanine/metabolism , Fungicides, Industrial/metabolism , Nitriles/metabolism , Poaceae/metabolism , Adsorption/drug effects , Alanine/pharmacology , California , Climate , Environmental Monitoring/methods , Fungicides, Industrial/pharmacology , Half-Life , Nitriles/pharmacology , Pesticide Residues/analysis , Soil/analysis , Soil Pollutants/analysis , Volatilization/drug effects , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...