Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 11(44): 10692-10705, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37917006

ABSTRACT

A nanocomposite of (2-aminoethyl)piperazine ligand substituted with zinc(II) tetra carboxylic acid phthalocyanine (ZnTEPZCAPC) and MWCNTs was constructed and employed to develop an electrochemical sensor with outstanding sensitivity and a low detection limit. The macrocyclic complex ZnTEPZCAPC was first synthesized and then employed for the electrochemical determination of the antipsychotic drug promazine (PMZ). The as-prepared ZnTEPZCAPC and MWCNT nanocomposite was characterized using different techniques, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), UV-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). Further, the prepared ZnTEPZCAPC@MWCNT nanocomposites were modified on a glassy carbon electrode (GCE) surface, and the electrochemical activity was investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA) tests in pH 7.0 phosphate buffer solution (PBS) in the potential window of 0.0-1 V. The ZnTEPZCAPC@MWCNTs displayed a superior electrochemical performance because of their high electrochemical active surface area (0.453 cm2), good conductivity, and a synergetic effect. The developed electrochemical sensor exhibited a broad linear range of 0.05-635 µM and the lowest detection limit of 0.0125 nM, as well as excellent sensitivity, repeatability, and reproducibility. Finally, the fabricated sensor was successively used for the real-time detection of PMZ in environmental and biological samples and displayed feasible recoveries.


Subject(s)
Antipsychotic Agents , Promazine , Spectroscopy, Fourier Transform Infrared , Reproducibility of Results , Zinc , Piperazines
SELECTION OF CITATIONS
SEARCH DETAIL
...