Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762289

ABSTRACT

Dairy protein hydrolysates possess a broad spectrum of bioactivity and hypoallergenic properties, as well as pronounced bitter taste. The bitterness is reduced by complexing the proteolysis products with cyclodextrins (CDs), and it is also important to study the bioactivity of the peptides in inclusion complexes. Hydrolysates of whey and colostrum proteins with extensive hydrolysis degree and their complexes with ß/γ-CD were obtained in the present study, and comprehensive comparative analysis of the experimental samples was performed. The interaction of CD with peptides was confirmed via different methods. Bioactivity of the initial hydrolysates and their complexes were evaluated. Antioxidant activity (AOA) was determined by fluorescence reduction of fluorescein in the Fenton system. Antigenic properties were studied by competitive enzyme immunoassay. Antimutagenic effect was estimated in the Ames test. According to the experimental data, a 2.17/2.78-fold and 1.45/2.14-fold increase in the AOA was found in the ß/γ-CD interaction with whey and colostrum hydrolysates, respectively. A 5.6/5.3-fold decrease in the antigenicity of whey peptides in complex with ß/γ-CD was detected, while the antimutagenic effect in the host-guest systems was comparable to the initial hydrolysates. Thus, bioactive CD complexes with dairy peptides were obtained. Complexes are applicable as a component of specialized foods (sports, diet).


Subject(s)
Antimutagenic Agents , gamma-Cyclodextrins , Female , Pregnancy , Humans , Whey , Colostrum , Whey Proteins/pharmacology , Peptides/pharmacology
2.
J Phys Chem B ; 109(36): 17038-46, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16853172

ABSTRACT

Exciton diffusion has been studied in 5-25-nm-thick films of zinc tetra-(p-octylphenyl)-porphyrin (ZnTOPP) spin-coated onto quartz slides by intentional doping with quenchers using steady-state as well as time-resolved fluorescence spectroscopy. The fluorescence spectra of the films are very similar to those of solutions, indicating emission from localized exciton states. From the dependence of the fluorescence quenching on the quencher concentration and fluorescence lifetime measurements, the exciton diffusion can be concluded to be quasi-one-dimensional with an exciton diffusion length of 9 +/- 3 nm and an intrastack energy-transfer rate constant of 10(11)-10(12) s(-1). From fluorescence anisotropy decay measurements, we conclude that neighboring stacks aggregate in a herringbone structure, forming ordered domains that are randomly oriented in the substrate plane. These measurements indicate an interstack energy-transfer rate constant of (7 +/- 2) x 10(10) s(-1).


Subject(s)
Metalloporphyrins/chemistry , Physics , Spectrometry, Fluorescence/methods , Physical Phenomena
3.
J Chem Inf Comput Sci ; 44(2): 568-74, 2004.
Article in English | MEDLINE | ID: mdl-15032537

ABSTRACT

Simulation-based fitting has been applied to data analysis and parameter determination of complex experimental systems in many areas of chemistry and biophysics. However, this method is limited because of the time costs of the calculations. In this paper it is proposed to approximate and substitute a simulation model by an artificial neural network during the fitting procedure. Such a substitution significantly speeds up the parameter determination. This approach is tested on a model of fluorescence resonance energy transfer (FRET) within a system of site-directed fluorescence labeled M13 major coat protein mutants incorporated into a lipid bilayer. It is demonstrated that in our case the application of a trained artificial neural network for the substitution of the simulation model results in a significant gain in computing time by a factor of 5 x 10(4). Moreover, an artificial neural network produces a smooth approximation of the noisy results of a stochastic simulation.


Subject(s)
Lipids/chemistry , Proteins/chemistry , Algorithms , Artificial Intelligence , Bacteriophage M13/chemistry , Biophysical Phenomena , Biophysics , Capsid Proteins/chemistry , Computer Simulation , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Lipid Bilayers , Models, Chemical , Neural Networks, Computer , Neurons , Structure-Activity Relationship , Thermodynamics
4.
Chemphyschem ; 4(6): 567-87, 2003 Jun 16.
Article in English | MEDLINE | ID: mdl-12836479

ABSTRACT

Electronic excitation energy migration in a photonic antenna host-guest material has been investigated by time-resolved fluorescence experiments and by Monte Carlo calculations. The host consists of a linear channel system (zeolite L). The channels are filled with energy transporting dyes (donors) in their middle section and by one or several monolayers of a strongly luminescent trapping dye (acceptors) at each end of the channels. Excitation energy is transported among the donors in a series of steps until it reaches an acceptor at one end of the channels, or it is somehow trapped on its way, or it escapes by spontaneous emission. We describe the organization of dyes in the channels by means of Monte Carlo simulation and we report time-resolved data on a variety of pyronine-, oxonine-, and oxonine, pyronine-zeolite L materials. In the latter, the pyronine acts as donor and oxonine as acceptor. We find that the luminescence decay of crystals containing only one kind of dye is single exponential for moderate loading if measured under oxygen-free conditions, but biexponential otherwise. The main characteristic of the time evolution of oxonine, pyronine-zeolite L crystals is that the acceptor intensity is first built up before it starts to decay. This intensity increase becomes faster with increasing donor loading, a fact that beautifully supports the interpretation that the crystals behave as photonic antenna in which excitation energy is transported preferentially along the channels by a Förster-type mechanism until it reaches the acceptor, where it is emitted as red luminescence.

SELECTION OF CITATIONS
SEARCH DETAIL
...