Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 13(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37366970

ABSTRACT

Point-of-care testing (POCT), also known as on-site or near-patient testing, has been exploding in the last 20 years. A favorable POCT device requires minimal sample handling (e.g., finger-prick samples, but plasma for analysis), minimal sample volume (e.g., one drop of blood), and very fast results. Shear horizontal surface acoustic wave (SH-SAW) biosensors have attracted a lot of attention as one of the effective solutions to complete whole blood measurements in less than 3 min, while providing a low-cost and small-sized device. This review provides an overview of the SH-SAW biosensor system that has been successfully commercialized for medical use. Three unique features of the system are a disposable test cartridge with an SH-SAW sensor chip, a mass-produced bio-coating, and a palm-sized reader. This paper first discusses the characteristics and performance of the SH-SAW sensor system. Subsequently, the method of cross-linking biomaterials and the analysis of SH-SAW real-time signals are investigated, and the detection range and detection limit are presented.


Subject(s)
Acoustics , Biosensing Techniques , Humans , Point-of-Care Systems , Biosensing Techniques/methods , Immunoassay/methods , Sound
2.
Biosensors (Basel) ; 12(8)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36004995

ABSTRACT

To prevent the COVID-19 pandemic that threatens human health, vaccination has become a useful and necessary tool in the response to the pandemic. The vaccine not only induces antibodies in the body, but may also cause adverse effects such as fatigue, muscle pain, blood clots, and myocarditis, especially in patients with chronic disease. To reduce unnecessary vaccinations, it is becoming increasingly important to monitor the amount of anti-SARS-CoV-2 S protein antibodies prior to vaccination. A novel SH-SAW biosensor, coated with SARS-CoV-2 spike protein, can help quantify the amount of anti-SARS-CoV-2 S protein antibodies with 5 µL of finger blood within 40 s. The LoD of the spike-protein-coated SAW biosensor was determined to be 41.91 BAU/mL, and the cut-off point was determined to be 50 BAU/mL (Youden's J statistic = 0.94733). By using the SH-SAW biosensor, we found that the total anti-SARS-CoV-2 S protein antibody concentrations spiked 10−14 days after the first vaccination (p = 0.0002) and 7−9 days after the second vaccination (p = 0.0116). Furthermore, mRNA vaccines, such as Moderna or BNT, could achieve higher concentrations of total anti-SARS-CoV-2 S protein antibodies compared with adenovirus vaccine, AZ (p < 0.0001). SH-SAW sensors in vitro diagnostic systems are a simple and powerful technology to investigate the local prevalence of COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/diagnosis , COVID-19/prevention & control , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Viral Vaccines/pharmacology
3.
Diagnostics (Basel) ; 11(10)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34679536

ABSTRACT

Since the Coronavirus disease 2019 (COVID-19) pandemic outbreak, many methods have been used to detect antigens or antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including viral culture, nucleic acid test, and immunoassay. The shear-horizontal surface acoustic wave (SH-SAW) biosensor is a novel pathogen detection platform with the advantages of high sensitivity and short detection time. The objective of this study is to develop a SH-SAW biosensor to detect the anti-SARS-CoV-2 nucleocapsid antibody. The rabbit sera collected from rabbits on different days after SARS-CoV-2 N protein injection were evaluated by SH-SAW biosensor and enzyme-linked immunosorbent assay (ELISA). The results showed that the SH-SAW biosensor achieved a high correlation coefficient (R = 0.9997) with different concentrations (34.375-1100 ng/mL) of the "spike-in" anti-N protein antibodies. Compared to ELISA, the SH-SAW biosensor has better sensitivity and can detect anti-N protein IgG signals earlier than ELISA on day 6 (p < 0.05). Overall, in this study, we demonstrated that the SH-SAW biosensor is a promising platform for rapid in vitro diagnostic (IVD) testing, especially for antigen or antibody testing.

4.
Sensors (Basel) ; 21(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34300665

ABSTRACT

Shear horizontal surface acoustic wave (SH-SAW) biosensors measure the reaction of capture antibodies immobilized on the sensing surface to capture test molecules (antigens) by using the change in SH-SAW propagation characteristics. SH-SAW displacement exists not only on the SH-SAW propagating surface, but also partially penetrates the specimen liquid to a certain depth, which is determined by the liquid properties of the specimen and the operating frequency of the SH-SAW. This phenomenon is called viscosity penetration. In previous studies, the effect of viscosity penetration was not considered in the measurement of SH-SAW biosensors, and the mass or viscosity change caused by the specific binding of capture antibodies to the target antigen was mainly used for the measurement. However, by considering the effect of viscosity penetration, it was found that the antigen-antibody reaction could be measured and the detection characteristics of the biosensor could be improved. Therefore, this study aims to evaluate the detection properties of SH-SAW biosensors in the surface height direction by investigating the relationship between molecular dimensions and SH-SAW propagation characteristics, which are pseudo-changed by varying the diameter of gold nanoparticles. For the evaluation, we introduced a layer parameter defined by the ratio of the SH-SAW amplitude change to the SH-SAW velocity change caused by the antigen-antibody reaction. We found a correlation between the layer parameter and pseudo-varied molecular dimensions. The results suggest that SH-SAW does not only measure the mass and viscosity but can also measure the size of the molecule to be detected. This shows that SH-SAW biosensors can be used for advanced functionality.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Acoustics , Gold , Sound
5.
Sci Rep ; 9(1): 11034, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363141

ABSTRACT

Periodontitis is an economically important disease which is highly prevalent worldwide. Current diagnostic approaches are time-consuming and require interpretation of multiple aspects of clinical and radiographic assessment. Chair-side monitoring of inflammatory mediators of periodontitis could provide immediate information about disease activity, which can inform patient management. We aimed to develop a novel prototype biosensor to measure salivary matrix metalloproteinase-8 (MMP-8) using specific antibodies and surface acoustic wave (SAW) technology. The analytical performance of the prototype biosensor was compared to standard enzyme-linked immunosorbent assay (ELISA) using unstimulated saliva samples obtained from patients with periodontitis before and after non-surgical treatment (N = 58), patients with gingivitis (N = 54) and periodontally healthy volunteers (N = 65). Receiver operator characteristic (ROC) analysis for distinguishing periodontitis from health revealed an almost identical performance between the sensor and ELISA assays (area under curve values (AUC): ELISA 0.93; SAW 0.89). Furthermore, both analytical approaches yielded readouts which distinguished between heath, gingivitis and periodontitis, correlated identically with clinical measures of periodontal disease and recorded similar post-treatment decreases in salivary MMP-8 in periodontitis. The assay time for our prototype device is 20 minutes. The prototype SAW biosensor is a novel and rapid method of monitoring periodontitis which delivers similar analytical performance to conventional laboratory assays.


Subject(s)
Biosensing Techniques/methods , Matrix Metalloproteinase 8/analysis , Periodontitis/metabolism , Saliva/chemistry , Acoustics , Adult , Antibodies/immunology , Diagnosis, Oral/methods , Female , Gingivitis/diagnosis , Gingivitis/metabolism , Humans , Immunoassay/methods , Male , Matrix Metalloproteinase 8/immunology , Middle Aged , Periodontitis/diagnosis
6.
Talanta ; 203: 274-279, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31202338

ABSTRACT

The possibility of dithiobis(succinimidyl propionate) (DSP) for repeated immunoassay with a surface acoustic wave (SAW) immunosensor was explored. In the sensor, DSP was used to modify a gold-coated quartz sensing area of a SAW device by forming a self-assembled monolayer on the gold surface. In a model sandwich assay using mouse (mIgG) and anti-mouse (a-mIgG) antibodies, the primary antibody, mIgG, firstly reacted with N-hydroxysuccinimide ester groups of DSP and was immobilized on the SAW device to fabricate the SAW immunosensor. Optimization of adsorption time of mIgG revealed that both degrees of adsorption and immobilization of mIgG reached a saturation at 30 min although the immobilization was more dependent on the adsorption time. Through characterization of the DSP-modified SAW immunosensor, a high selectivity, with which no sensor output was observed from various kinds of secondary antibodies except for a-mIgG, along with 8-fold shorter measurement time (15 min) than that of enzyme-linked immunosorbent assay were obtained. Furthermore, 10 repeated measurement of a-mIgG demonstrated a high reproducibility of the sensor output (coefficient of variation of 7.0%). These validate the utility of DSP in the SAW immunosensor for rapid and repeated measurement of antigens.

7.
NPJ Digit Med ; 1: 35, 2018.
Article in English | MEDLINE | ID: mdl-31304317

ABSTRACT

Despite widened access to HIV testing, around half of those infected worldwide are unaware of their HIV-positive status and linkage to care remains a major challenge. Current rapid HIV tests are typically analogue risking incorrect interpretation, no facile electronic data capture, poor linkage to care and data loss for public health. Smartphone-connected diagnostic devices have potential to dramatically improve access to testing and patient retention with electronic data capture and wireless connectivity. We report a pilot clinical study of surface acoustic wave biosensors based on low-cost components found in smartphones to diagnose HIV in 133 patient samples. We engineered a small, portable, laboratory prototype and dual-channel biochips, with in-situ reference control coating and miniaturised configuration, requiring only 6 µL plasma. The dual-channel biochips were functionalized by ink-jet printing with capture coatings to detect either anti-p24 or anti-gp41 antibodies, and a reference control. Biochips were tested with 31 plasma samples from patients with HIV, and 102 healthy volunteers. SH-SAW biosensors showed excellent sensitivity, specificity, low sample volumes and rapid time to result, and were benchmarked to commercial rapid HIV tests. Testing for individual biomarkers found sensitivities of 100% (anti-gp41) and 64.5% (anti-p24) (combined sensitivity of 100%) and 100% specificity, within 5 min. All positive results were recorded within 60 s of sample addition with an electronic readout. Next steps will focus on a smartphone-connected device prototype and user-friendly app interface for larger scale evaluation and field studies, towards our ultimate goal of a new generation of affordable, connected point-of-care HIV tests.

8.
Sci Rep ; 7(1): 11971, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931860

ABSTRACT

The development is reported of an ultra-rapid, point-of-care diagnostic device which harnesses surface acoustic wave (SAW) biochips, to detect HIV in a finger prick of blood within 10 seconds (sample-in-result-out). The disposable quartz biochip, based on microelectronic components found in every consumer smartphone, is extremely fast because no complex labelling, amplification or wash steps are needed. A pocket-sized control box reads out the SAW signal and displays results electronically. High analytical sensitivity and specificity are found with model and real patient blood samples. The findings presented here open up the potential of consumer electronics to cut lengthy test waiting times, giving patients on the spot access to potentially life-saving treatment and supporting more timely public health interventions to prevent disease transmission.


Subject(s)
Biosensing Techniques/methods , HIV Infections/diagnosis , Point-of-Care Systems , Smartphone , Humans , Sensitivity and Specificity , Time
9.
Article in English | MEDLINE | ID: mdl-28783630

ABSTRACT

In this paper, we describe a shear horizontal surface acoustic wave (SH-SAW) immunosensor that utilizes induce agitation by a Rayleigh SAW (R-SAW) on an X-cut 148-Y LiTaO3 substrate. On this substrate, SH-SAWs and R-SAWs with different frequencies can be effectively generated at an interdigital transducer (IDT). First, to consider the power flow angles of SH-SAWs and R-SAWs on this substrate, the 360-MHz delay lines with six different tilt angles were designed and fabricated. From the experiments, an optimal power flow angle of 9° for the SH-SAW on this substrate is obtained. Second, in order to consider the immunoreactions of the SH-SAW immunosensors, a delay line with a tilt angle of 9° was designed and fabricated on this substrate. The delay line, which can generate two SAWs, namely, a 100-MHz SH-SAW and an 88.8-MHz R-SAW, has a propagation area covered with antigens of human serum albumin between transmitting and receiving IDTs. The immunoreactions caused by antigen-antibody binding events on the surface of the delay line were investigated on the basis of the velocity changes of the SH-SAWs for sensing with and without the assistance of an R-SAW. As a result, it was confirmed that the SH-SAW velocity changes due to antigen-antibody reactions can be markedly increased by the assistance of R-SAW agitation.

10.
Anal Chem ; 87(20): 10470-4, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26378678

ABSTRACT

This work describes a sensor to be incorporated into the on-site monitoring system of airborne house dust mite (HDM) allergens. A surface acoustic wave (SAW) device was combined with self-assembled monolayers of a highly stable antibody capture protein on the SAW surface that have high resistance to pH change. A sandwich assay was used to measure a HDM allergen, Der f 1 derived from Dermatophagoides farinae. Capture antibodies were cross-linked to a protein G based capture layer (ORLA85) on the sensor surface, thereby only Der f 1 and detection antibodies were regenerated by changing pH, resulting in fast repetition of the measurement. The sensor was characterized through 10 repetitive measurements of Der f 1, which demonstrated high reproducibility of the sensor with the coefficient of variation of 5.6%. The limit of detection (LOD) of the sensor was 6.1 ng·mL(-1), encompassing the standard (20 ng·mL(-1)) set by the World Health Organization. Negligible sensor outputs were observed for five different major allergens including other HDM allergens which tend to have cross-reactivity to Der f 1 and their mixtures with Der f 1. Finally, the sensor lifetime was evaluated by conducting three measurements per day, and the sensor output did not substantially change for 4 days. These characteristics make the SAW immunosensor a promising candidate for incorporation into on-site allergen monitoring systems.


Subject(s)
Air Pollution, Indoor/analysis , Allergens/analysis , Antigens, Dermatophagoides/analysis , Bacterial Proteins/chemistry , Dust/analysis , Enzyme-Linked Immunosorbent Assay , Sound , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Bacterial Proteins/immunology , Cats , Dust/immunology , Enzyme-Linked Immunosorbent Assay/instrumentation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...