Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 287(2): 559-66, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9808681

ABSTRACT

The neuroprotective efficacy of YM872, a novel, highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, was investigated in rats subjected to permanent occlusion of the left middle cerebral artery. The rats were assessed either histologically or neurologically 24 hr or 1 wk after ischemia. YM872 was intravenously infused for either 4 or 24 hr at dose rates of 0 to 20 mg/kg/hr starting 5 min after ischemia to examine the effect of prolonged treatment. YM872 was then infused at 20 mg/kg/hr beginning 0 to 4 hr after ischemia to determine the efficacy time window. Additionally, a 20 mg/kg/hr dose rate of YM872 was infused for 4 hr in single day- or 5-day repetitive-administrations to evaluate long-term benefits of the drug. YM872 significantly reduced infarct volume in both 4- and 24-hr treatment groups measured 24 hr after ischemia. No difference was observed in the degree of protection between length of infusion. Significant neuroprotection was maintained even when drug administration was delayed up to 2 hr after ischemia. A single YM872-administration significantly improved neurological deficit and reduced infarct volume (30%, P <.01) measured 1 wk after ischemia. YM872 treatment did not induce such adverse effects as physiological changes, serious behavioral abnormalities or nephrotoxicity. These data suggest that the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor plays a crucial role in the progression of neuronal damage in the early phase of ischemia and that YM872 may be useful in treating acute ischemic stroke.


Subject(s)
Brain Ischemia/drug therapy , Cerebral Arteries/pathology , Excitatory Amino Acid Antagonists/pharmacology , Imidazoles/pharmacology , Quinoxalines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Animals , Brain Ischemia/pathology , Excitatory Amino Acid Antagonists/therapeutic use , Imidazoles/therapeutic use , Male , Motor Activity/drug effects , Quinoxalines/therapeutic use , Rats , Rats, Inbred F344
2.
J Pharmacol Exp Ther ; 284(2): 467-73, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9454786

ABSTRACT

YM872 ([2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3, 4-tetrahydro-1-quinoxalinyl]-acetic acid monohydrate), a selective, potent and highly water-soluble competitive alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, was investigated for its neuroprotective effect against focal cerebral ischemia in halothane-anesthetized cats. Cats were subjected to permanent occlusion of the left middle cerebral artery for 6 h, then sacrificed and examined histologically. The electroencephalogram and cerebral blood flow were monitored. Intravenous infusion of YM872 starting 10 min after the onset of ischemia at a rate of 2 mg/kg/h for 6 h markedly reduced the volume of ischemic damage by 61% (from 2604 +/- 202 mm3 of the cerebral hemisphere in saline-treated cats to 1025 +/- 277 mm3 in YM872-treated cats; P < .01), as assessed in 12 stereotaxically determined coronal sections. No significant differences were observed between YM872- and saline-treated cats concerning physiological variables including brain temperature. No precipitation of YM872 in the kidney was seen in any YM872-treated animal. The present data further support the notion that the AMPA receptor plays an important role in the progression of focal ischemic damage in a gyrencephalic model. This evidence for the neuroprotective efficacy of YM872 suggests its therapeutic potential in the treatment of acute stroke in humans.


Subject(s)
Brain Ischemia/drug therapy , Imidazoles/pharmacology , Neuroprotective Agents , Quinoxalines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Animals , Brain/blood supply , Cats , Cerebral Cortex/blood supply , Corpus Striatum/blood supply , Male , Regional Blood Flow/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...