Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Am J Physiol Endocrinol Metab ; 326(5): E663-E672, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38568150

ABSTRACT

Despite the fact that genes and the environment are known to play a central role in islet function, our knowledge of how these parameters interact to modulate insulin secretory function remains relatively poor. Presently, we performed ex vivo glucose-stimulated insulin secretion and insulin content assays in islets of 213 mice from 13 inbred mouse strains on chow, Western diet (WD), and a high-fat, carbohydrate-free (KETO) diet. Strikingly, among these 13 strains, islets from the commonly used C57BL/6J mouse strain were the least glucose responsive. Using matched metabolic phenotyping data, we performed correlation analyses of isolated islet parameters and found a positive correlation between basal and glucose-stimulated insulin secretion, but no relationship between insulin secretion and insulin content. Using in vivo metabolic measures, we found that glucose tolerance determines the relationship between ex vivo islet insulin secretion and plasma insulin levels. Finally, we showed that islet glucose-stimulated insulin secretion decreased with KETO in almost all strains, concomitant with broader phenotypic changes, such as increased adiposity and glucose intolerance. This is an important finding as it should caution against the application of KETO diet for beta-cell health. Together these data offer key insights into the intersection of diet and genetic background on islet function and whole body glucose metabolism.NEW & NOTEWORTHY Thirteen strains of mice on chow, Western diet, and high-fat, carbohydrate-free (KETO), correlating whole body phenotypes to ex vivo pancreatic islet functional measurements, were used. The study finds a huge spectrum of functional islet responses and insulin phenotypes across all strains and diets, with the ubiquitous C57Bl/6J mouse exhibiting the lowest secretory response of all strains, highlighting the overall importance of considering genetic background when investigating islet function. Ex vivo basal and stimulated insulin secretion are correlated in the islet, and KETO imparts widescale downregulation of islet insulin secretion.


Subject(s)
Diet, High-Fat , Insulin Secretion , Insulin , Islets of Langerhans , Mice, Inbred C57BL , Animals , Mice , Islets of Langerhans/metabolism , Insulin Secretion/physiology , Insulin/metabolism , Insulin/blood , Male , Diet, Western , Glucose/metabolism , Diet, Carbohydrate-Restricted , Mice, Inbred Strains , Blood Glucose/metabolism , Glucose Intolerance/metabolism , Glucose Intolerance/genetics
3.
iScience ; 26(4): 106477, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37091234

ABSTRACT

We have exploited islet-associated macrophages (IAMs) as a model of resident macrophage function, focusing on more physiological conditions than the commonly used extremes of M1 (inflammation) versus M2 (tissue remodeling) polarization. Under steady state, murine IAMs are metabolically poised between aerobic glycolysis and oxidative phosphorylation, and thereby exert a brake on glucose-stimulated insulin secretion (GSIS). This is underpinned by epigenetic remodeling via the metabolically regulated histone demethylase Kdm5a. Conversely, GSIS is enhanced by engaging Axl receptors on IAMs, or by augmenting their oxidation of glucose. Following high-fat feeding, efferocytosis is stimulated in IAMs in conjunction with Mertk and TGFß receptor signaling. This impairs GSIS and potentially contributes to ß-cell failure in pre-diabetes. Thus, IAMs serve as relays in many more settings than currently appreciated, fine-tuning insulin secretion in response to dynamic changes in the external environment. Intervening in this nexus might represent a means of preserving ß-cell function during metabolic disease.

4.
Elife ; 112022 11 17.
Article in English | MEDLINE | ID: mdl-36394259

ABSTRACT

Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity, and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However, while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycaemic/hyperinsulinaemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlates with these differences.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose Intolerance , Insulin Resistance , Mice , Animals , Starch , Obesity , Diet, High-Fat/adverse effects , Insulin , Mice, Obese , Ceramides , Glucose
5.
Biochem Pharmacol ; 194: 114821, 2021 12.
Article in English | MEDLINE | ID: mdl-34748819

ABSTRACT

The pancreatic ß-cells control insulin secretion in the body to regulate glucose homeostasis, and ß-cell stress and dysfunction is characteristic of Type 2 Diabetes. Pharmacological targeting of the ß-cell to increase insulin secretion is typically utilised, however, extended use of common drugs such as sulfonylureas are known to result in secondary failure. Moreover, there is evidence they may induce ß-cell failure in the long term. Within ß-cells, insulin secretory granules (ISG) serve as compartments to store, process and traffic insulin for exocytosis. There is now growing evidence that ISG exist in multiple populations, distinct in their protein composition, motility, age, and capacity for secretion. In this review, we discuss the implications of a heterogenous ISG population in ß-cells and highlight the need for more understanding into how unique ISG populations may be targeted in anti-diabetic therapies.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug Delivery Systems/methods , Exocytosis/drug effects , Hypoglycemic Agents/administration & dosage , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Animals , Diabetes Mellitus, Type 2/metabolism , Exocytosis/physiology , Humans , Hypoglycemic Agents/metabolism , Insulin/metabolism , Insulin Secretion/physiology , Insulin-Secreting Cells/metabolism
6.
Metabolites ; 11(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34822444

ABSTRACT

This Special Issue, Islet Biology and Metabolism, was intended as a collection of studies highlighting the importance of the pancreatic islet-in both form and function-to our growing understanding of metabolic physiology and disease [...].

7.
iScience ; 24(10): 103099, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34622154

ABSTRACT

Pancreatic islets are essential for maintaining physiological blood glucose levels, and declining islet function is a hallmark of type 2 diabetes. We employ mass spectrometry-based proteomics to systematically analyze islets from 9 genetic or diet-induced mouse models representing a broad cross-section of metabolic health. Quantifying the islet proteome to a depth of >11,500 proteins, this study represents the most detailed analysis of mouse islet proteins to date. Our data highlight that the majority of islet proteins are expressed in all strains and diets, but more than half of the proteins vary in expression levels, principally due to genetics. Associating these varied protein expression levels on an individual animal basis with individual phenotypic measures reveals islet mitochondrial function as a major positive indicator of metabolic health regardless of strain. This compendium of strain-specific and dietary changes to mouse islet proteomes represents a comprehensive resource for basic and translational islet cell biology.

8.
Metabolites ; 11(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34436456

ABSTRACT

The pancreatic ß-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy ß-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing ß-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.

9.
Nat Metab ; 3(6): 810-828, 2021 06.
Article in English | MEDLINE | ID: mdl-34099926

ABSTRACT

Reduced protein intake, through dilution with carbohydrate, extends lifespan and improves mid-life metabolic health in animal models. However, with transition to industrialised food systems, reduced dietary protein is associated with poor health outcomes in humans. Here we systematically interrogate the impact of carbohydrate quality in diets with varying carbohydrate and protein content. Studying 700 male mice on 33 isocaloric diets, we find that the type of carbohydrate and its digestibility profoundly shape the behavioural and physiological responses to protein dilution, modulate nutrient processing in the liver and alter the gut microbiota. Low (10%)-protein, high (70%)-carbohydrate diets promote the healthiest metabolic outcomes when carbohydrate comprises resistant starch (RS), yet the worst outcomes were with a 50:50 mixture of monosaccharides fructose and glucose. Our findings could explain the disparity between healthy, high-carbohydrate diets and the obesogenic impact of protein dilution by glucose-fructose mixtures associated with highly processed diets.


Subject(s)
Diet , Dietary Carbohydrates/metabolism , Dietary Proteins/metabolism , Energy Metabolism , Homeostasis , Animals , Glucose/metabolism , Health Status , Male , Mice , Obesity/etiology , Obesity/metabolism , Starch/metabolism
10.
Metabolites ; 11(5)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946444

ABSTRACT

Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions.

12.
Diabetes ; 70(2): 436-448, 2021 02.
Article in English | MEDLINE | ID: mdl-33168621

ABSTRACT

Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic ß-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in ß-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.


Subject(s)
Diabetes Mellitus/metabolism , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Secretory Vesicles/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cell Line , Diabetes Mellitus/genetics , Exocytosis/physiology , Glucose Tolerance Test , Mice , Mice, Knockout , Rats , Vesicular Transport Proteins/genetics
13.
J Biol Chem ; 295(27): 8901-8911, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32341128

ABSTRACT

Within the pancreatic ß-cells, insulin secretory granules (SGs) exist in functionally distinct pools, displaying variations in motility as well as docking and fusion capability. Current therapies that increase insulin secretion do not consider the existence of these distinct SG pools. Accordingly, these approaches are effective only for a short period, with a worsening of glycemia associated with continued decline in ß-cell function. Insulin granule age is underappreciated as a determinant for why an insulin granule is selected for secretion and may explain why newly synthesized insulin is preferentially secreted from ß-cells. Here, using a novel fluorescent timer protein, we aimed to investigate the preferential secretion model of insulin secretion and identify how granule aging is affected by variation in the ß-cell environment, such as hyperglycemia. We demonstrate the use of a fluorescent timer construct, syncollin-dsRedE5TIMER, which changes its fluorescence from green to red over 18 h, in both microscopy and fluorescence-assisted organelle-sorting techniques. We confirm that the SG-targeting construct localizes to insulin granules in ß-cells and does not interfere with normal insulin SG behavior. We visualize insulin SG aging behavior in MIN6 and INS1 ß-cell lines and in primary C57BL/6J mouse and nondiabetic human islet cells. Finally, we separated young and old insulin SGs, revealing that preferential secretion of younger granules occurs in glucose-stimulated insulin secretion. We also show that SG population age is modulated by the ß-cell environment in vivo in the db/db mouse islets and ex vivo in C57BL/6J islets exposed to different glucose environments.


Subject(s)
Insulin Secretion/physiology , Insulin/metabolism , Secretory Vesicles/metabolism , Animals , Cell Line , Exocytosis/physiology , Fluorescent Dyes/chemistry , Glucose/metabolism , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/physiology , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence/methods , Time Factors
14.
J Cell Sci ; 133(6)2020 03 30.
Article in English | MEDLINE | ID: mdl-32079655

ABSTRACT

F-actin dynamics are known to control insulin secretion, but the point of intersection with the stimulus-secretion cascade is unknown. Here, using multiphoton imaging of ß cells isolated from Lifeact-GFP transgenic mice, we show that glucose stimulation does not cause global changes in subcortical F-actin. Instead, we observe spatially discrete and transient F-actin changes around each fusing granule. This F-actin remodelling is dependent on actin nucleation and is observed for granule fusion induced by either glucose or high potassium stimulation. Using GFP-labelled proteins, we identify local enrichment of Arp3, dynamin 2 and clathrin, all occurring after granule fusion, suggesting early recruitment of an endocytic complex to the fusing granules. Block of Arp2/3 activity with drugs or shRNA inhibits F-actin coating, traps granules at the cell membrane and reduces insulin secretion. Block of formin-mediated actin nucleation also blocks F-actin coating, but has no effect on insulin secretion. We conclude that local Arp2/3-dependent actin nucleation at the sites of granule fusion plays an important role in post-fusion granule dynamics and in the regulation of insulin secretion.


Subject(s)
Actin-Related Protein 2-3 Complex , Actins , Insulin-Secreting Cells , Actin-Related Protein 2-3 Complex/physiology , Actins/genetics , Actins/metabolism , Animals , Exocytosis , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice
15.
Sci Rep ; 9(1): 19466, 2019 12 19.
Article in English | MEDLINE | ID: mdl-31857633

ABSTRACT

A threonine-to-Isoleucine (Thr52Ile) mutation within the pro-domain of the Sorcs1 gene was positionally cloned as the gene underlying a quantitative trait locus that affects fasting insulin levels in mice. In humans, genome-wide association studies and linkage studies have shown that SORCS1 is associated with diabetes and all of diabetes complications. We have recently shown that deletion of Sorcs1 in mice made obese with the leptinob mutation results in diabetes and an insulin granule stability defect. This present study investigates the functional consequence of the Sorcs1 Thr52Ile mutation in the rat INS1 ß-cell line expressing either the wildtype or mutant Sorcs1 allele. We find that Sorcs1 Thr52Ile mutation is associated with increased basal insulin secretion, reduced glucose-stimulated insulin secretion and decreased insulin content in INS1 cells. Moreover, expression of Thr52Ile causes differential processing of the Sorcs1 protein resulting in the formation of an additional 90 kDa mutant form of the protein. The mutant form of the protein is localised to the ER, retains its pro-domain, and concurrently reduces expression of the functional mature 130 kDa Sorcs1 protein. These findings provide a mechanistic clue to why this specific allelic variation in Sorcs1 was associated with reduced insulin levels and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Insulin-Secreting Cells/pathology , Insulin/metabolism , Receptors, Cell Surface/genetics , Alternative Splicing , Animals , Cell Line , Diabetes Mellitus, Type 2/pathology , Endoplasmic Reticulum/metabolism , Half-Life , Humans , Insulin-Secreting Cells/cytology , Mutation , Polymorphism, Single Nucleotide , Protein Domains/genetics , Rats , Receptors, Cell Surface/metabolism
16.
Front Cell Neurosci ; 13: 527, 2019.
Article in English | MEDLINE | ID: mdl-31849614

ABSTRACT

Dysfunction of retinal glial cells, particularly Müller cells, has been implicated in several retinal diseases. Despite their important contribution to retinal homeostasis, a specific way to differentiate retinal glial cells from human pluripotent stem cells has not yet been described. Here, we report a method to differentiate retinal glial cells from human embryonic stem cells (hESCs) through promoting the Notch signaling pathway. We first generated retinal progenitor cells (RPCs) from hESCs then promoted the Notch signaling pathway using Notch ligands, including Delta-like ligand 4 and Jagged-1. We validated glial cell differentiation with qRT-PCR, immunocytochemistry, western blots and fluorescence-activated cell sorting as we promoted Notch signaling in RPCs. We found that promoting Notch signaling in RPCs for 2 weeks led to upregulation of glial cell markers, including glial fibrillary acidic protein (GFAP), glutamine synthetase, vimentin and cellular retinaldehyde-binding protein (CRALBP). Of these markers, we found the greatest increase in expression of the pan glial cell marker, GFAP. Conversely, we also found that inhibition of Notch signaling in RPCs led to upregulation of retinal neuronal markers including cone-rod homeobox (CRX) and orthodenticle homeobox 2 (OTX2) but with little expression of GFAP. This retinal glial differentiation method will help advance the generation of stem cell disease models to study the pathogenesis of retinal diseases associated with glial dysfunction such as macular telangiectasia type 2. This method may also be useful for the development of future therapeutics such as drug screening and gene editing using patient-derived retinal glial cells.

17.
Sci Rep ; 9(1): 16189, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31700009

ABSTRACT

Toll-like receptor (TLR) 2 and 4 signalling pathways are central to the body's defence against invading pathogens during pneumococcal meningitis. Whereas several studies support their importance in innate immunity, thereby preventing host mortality, any role in protecting neurological function during meningeal infection is ill-understood. Here we investigated both the acute immunological reaction and the long-term neurobehavioural consequences of experimental pneumococcal meningitis in mice lacking both TLR2 and TLR4. The absence of these TLRs significantly impaired survival in mice inoculated intracerebroventricularly with Streptococcus pneumoniae. During the acute phase of infection, TLR2/4-deficient mice had lower cerebrospinal fluid concentrations of interleukin-1ß, and higher interferon-γ, than their wild-type counterparts. After antibiotic cure, TLR2/4 double deficiency was associated with aggravation of behavioural impairment in mice, as shown by diurnal hypolocomotion throughout the adaptation phases in the Intellicage of TLR-deficient mice compared to their wild-type counterparts. While TLR2/4 double deficiency did not affect the cognitive ability of mice in a patrolling task, it aggravated the impairment of cognitive flexibility. We conclude that TLR2 and TLR4 are central to regulating the host inflammatory response in pneumococcal meningitis, which may mediate diverse compensatory mechanisms that protect the host not only against mortality but also long-term neurological complications.


Subject(s)
Behavior, Animal , Meningitis, Pneumococcal/prevention & control , Streptococcus pneumoniae/metabolism , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 4/deficiency , Animals , Interferon-gamma/cerebrospinal fluid , Interferon-gamma/genetics , Interleukin-1beta/cerebrospinal fluid , Interleukin-1beta/genetics , Meningitis, Pneumococcal/cerebrospinal fluid , Meningitis, Pneumococcal/genetics , Meningitis, Pneumococcal/pathology , Mice , Mice, Knockout , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
18.
Nat Metab ; 1(5): 532-545, 2019 05.
Article in English | MEDLINE | ID: mdl-31656947

ABSTRACT

Elevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets leads to hyperphagia, obesity and reduced lifespan. These effects are not due to elevated BCAA per se or hepatic mTOR activation, but rather due to a shift in the relative quantity of dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and is associated with central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averts the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes need not be due to intrinsic toxicity but, rather, a consequence of hyperphagia driven by AA imbalance.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Amino Acids/metabolism , Appetite Regulation , Life Expectancy , Animals , Female , Gene Expression Regulation , Hyperphagia/metabolism , Hypothalamus/metabolism , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Serotonin/metabolism , Tryptophan/metabolism
19.
Mol Metab ; 25: 83-94, 2019 07.
Article in English | MEDLINE | ID: mdl-31105056

ABSTRACT

OBJECTIVE: Insulin suppresses adipose tissue lipolysis after a meal, playing a key role in metabolic homeostasis. This is mediated via the kinase Akt and its substrate phosphodiesterase 3B (PDE3B). Once phosphorylated and activated, PDE3B hydrolyses cAMP leading to the inactivation of cAMP-dependent protein kinase (PKA) and suppression of lipolysis. However, several gaps have emerged in this model. Here we investigated the role of the PDE3B-interacting protein, α/ß-hydrolase ABHD15 in this process. METHODS: Lipolysis, glucose uptake, and signaling were assessed in ABHD15 knock down and knock out adipocytes and fat explants in response to insulin and/or ß-adrenergic receptor agonist. Glucose and fatty acid metabolism were determined in wild type and ABHD15-/- littermate mice. RESULTS: Deletion of ABHD15 in adipocytes resulted in a significant defect in insulin-mediated suppression of lipolysis with no effect on insulin-mediated glucose uptake. ABHD15 played a role in suppressing PKA signaling as phosphorylation of the PKA substrate Perilipin-1 remained elevated in response to insulin upon ABHD15 deletion. ABHD15-/- mice had normal glucose metabolism but defective fatty acid metabolism: plasma fatty acids were elevated upon fasting and in response to insulin, and this was accompanied by elevated liver triglycerides upon ß-adrenergic receptor activation. This is likely due to hyperactive lipolysis as evident by the larger triglyceride depletion in brown adipose tissue in these mice. Finally, ABHD15 protein levels were reduced in adipocytes from mice fed a Western diet, further implicating this protein in metabolic homeostasis. CONCLUSIONS: Collectively, ABHD15 regulates adipocyte lipolysis and liver lipid accumulation, providing novel therapeutic opportunities for modulating lipid homeostasis in disease.


Subject(s)
Adipose Tissue/metabolism , Carboxylic Ester Hydrolases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Lipid Accumulation Product/physiology , Lipolysis/physiology , Liver/metabolism , Membrane Proteins/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue/drug effects , Animals , Carbohydrate Metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Fasting , Fatty Acids/blood , Glucose/metabolism , Homeostasis , Insulin/metabolism , Lipid Metabolism , Lipolysis/drug effects , Male , Membrane Proteins/genetics , Membrane Proteins/pharmacology , Mice , Mice, Knockout , Perilipin-1/metabolism , Phosphorylation , Signal Transduction , Triglycerides
20.
Int J Mol Sci ; 19(11)2018 Nov 11.
Article in English | MEDLINE | ID: mdl-30423890

ABSTRACT

Streptococcus pneumoniae is a major meningitis-causing pathogen globally, bringing about significant morbidity and mortality, as well as long-term neurological sequelae in almost half of the survivors. Subsequent to nasopharyngeal colonisation and systemic invasion, translocation across the blood‒brain barrier (BBB) by S. pneumoniae is a crucial early step in the pathogenesis of meningitis. The BBB, which normally protects the central nervous system (CNS) from deleterious molecules within the circulation, becomes dysfunctional in S. pneumoniae invasion due to the effects of pneumococcal toxins and a heightened host inflammatory environment of cytokines, chemokines and reactive oxygen species intracranially. The bacteria‒host interplay within the CNS likely determines not only the degree of BBB pathological changes, but also host survival and the extent of neurological damage. This review explores the relationship between S. pneumoniae bacteria and the host inflammatory response, with an emphasis on the BBB and its roles in CNS protection, as well as both the acute and long-term pathogenesis of meningitis.


Subject(s)
Blood-Brain Barrier/pathology , Meningitis, Pneumococcal/microbiology , Meningitis, Pneumococcal/pathology , Streptococcus pneumoniae/physiology , Animals , Humans , Immunomodulation , Meningitis, Pneumococcal/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...