Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 203(4): 441-55, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21707930

ABSTRACT

AIM: The mechanisms underlying the fatigue that occurs in human muscle following sustained activity are thought to reside in one or more of the excitation-contraction coupling (E-C coupling) processes. This study investigated the association between the changes in select E-C coupling properties and the impairment in force generation that occurs with prolonged cycling. METHODS: Ten volunteers with a peak aerobic power (VO(2peak)) of 2.95 ± 0.27 L min(-1) (mean ± SE), exercised for 2 h at 62 ± 1.3%. Quadriceps function was assessed and tissue properties (vastus lateralis) were measured prior to (E1-pre) and following (E1-post) exercise and on three consecutive days of recovery (R1, R2 and R3). RESULTS: While exercise failed to depress the maximal activity (V(max) ) of the Na(+) ,K(+) -ATPase (P = 0.10), reductions (P < 0.05) were found at E1-post in V(max) of sarcoplasmic reticulum Ca(2+) -ATPase (-22%), Ca(2+) -uptake (-26%) and phase 1(-33%) and 2 (-38%) Ca(2+) -release. Both V(max) and Ca(2+) -release (phase 2) recovered by R1, whereas Ca(2+) -uptake and Ca(2+) -release (phase 1) remained depressed (P < 0.05) at R1 and at R1 and R2 and possibly R3 (P < 0.06) respectively. Compared with E1-pre, fatigue was observed (P < 0.05) at 10 Hz electrical stimulation at E1-post (-56%), which persisted throughout recovery. The exercise increased (P < 0.05) overall content of the Na(+), K(+)-ATPase (R1, R2 and R3) and the isoforms ß2 (R1, R2 and R3) and ß3 (R3), but not ß1 or the α-isoforms (α1, α2 and α3). CONCLUSION: These results suggest a possible direct role for Ca(2+)-release in fatigue and demonstrate a single exercise session can induce overlapping perturbations and adaptations (particularly to the Na(+), K(+)-ATPase).


Subject(s)
Bicycling/physiology , Excitation Contraction Coupling , Exercise/physiology , Muscle Fatigue , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Female , Humans , Isoenzymes/metabolism , Male , Pulmonary Gas Exchange , Young Adult
2.
Eur J Appl Physiol ; 111(5): 827-37, 2011 May.
Article in English | MEDLINE | ID: mdl-21046138

ABSTRACT

A single session of prolonged work was employed to investigate changes in selected metabolic, transporter and enzymatic properties in muscle. Ten active but untrained volunteers (weight = 73.9 ± 4.2 kg) with a peak aerobic power [Formula: see text] of 2.95 ± 0.27 l min(-1), cycled for 2 h at 62 ± 1.3% [Formula: see text] Tissue extraction from the vastus lateralis occurred prior to (E1-Pre) and following (E1-Post) exercise and on 3 consecutive days of recovery (R1, R2, R3). The exercise resulted in decreases (P < 0.05) in ATP (-9.3%) and creatine phosphate (-49%) and increases in lactate (+100%), calculated free ADP (+253%) and free AMP (+1,207%), all of which recovered to E1-Pre by R1. Glycogen concentration, which was depressed (P < 0.05) by 75% at E1-Post, did not recover until R3. Compared to E1-Pre, the cycling also resulted in decreases (P < 0.05) in the activities of cytochrome c oxidase, phosphorylase, and hexokinase but not in citrate synthase (CS) or 3-hydroxy-CoA dehydrogenase at E1-Post. With the exception of CS, which was elevated (P < 0.05) at R3, all enzyme activities were not different from E1-Pre during recovery. For the glucose (GLUT1, GLUT4) and monocarboxylate (MCT1, MCT4) transporters, changes in expression levels (P < 0.05) were only observed for GLUT1 at R1 (+42%) and R3 (+33%). It is concluded that the metabolic stress produced by prolonged exercise is reversed by 1 day of recovery. One day of exercise also resulted in a potential upregulation in the citric acid cycle and glucose transport capabilities, adaptations which are expressed at variable recovery durations.


Subject(s)
Bicycling/physiology , Glucose Transport Proteins, Facilitative/metabolism , Monocarboxylic Acid Transporters/metabolism , Muscle, Skeletal/metabolism , Female , Glycogen/metabolism , Humans , Lactic Acid/metabolism , Male , Oxygen Consumption/physiology , Phosphocreatine/metabolism , Quadriceps Muscle/metabolism , Young Adult
3.
J Appl Physiol (1985) ; 97(6): 2166-75, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15531571

ABSTRACT

This study examined the effects of extended sessions of heavy intermittent exercise on quadriceps muscle fatigue and weakness. Twelve untrained volunteers (10 men and 2 women), with a peak oxygen consumption of 44.3 +/- 2.3 ml.kg(-1).min(-1), exercised at approximately 91% peak oxygen consumption for 6 min once per hour for 16 h. Muscle isometric properties assessed before and after selected repetitions (R1, R2, R4, R7, R12, and R15) were used to quantitate fatigue (before vs. after repetitions) and weakness (before vs. before repetitions). Muscle fatigue at R1 was indicated by reductions (P < 0.05) in peak twitch force (135 +/- 13 vs. 106 +/- 11 N) and by a reduction (P < 0.05) in the force-frequency response, which ranged between approximately 53% at 10 Hz (113 +/- 12 vs. 52.6 +/- 7.4 N) and approximately 17% at 50 Hz (324 +/- 27 vs. 270 +/- 30 N). No recovery of force, regardless of stimulation frequency, was observed during the 54 min between R1 and R2. At R2 and for all subsequent repetitions, no reduction in force, regardless of stimulation frequency, was generally found after the exercise. The only exception was for R2, where, at 20 Hz, force was reduced (P < 0.05) by 18%. At R15, force before repetitions for high frequencies (i.e., 100 Hz) returned to R1 (333 +/- 29 vs. 324 +/- 27 N), whereas force at low frequency (i.e., 10 Hz) was only partially (P < 0.05) recovered (113 +/- 12 vs. 70 +/- 6.6 N). It is concluded that multiple sessions of heavy exercise can reverse the fatigue noted early and reduce or eliminate weakness depending on the frequency of stimulation.


Subject(s)
Isometric Contraction/physiology , Muscle Fatigue/physiology , Oxygen Consumption/physiology , Physical Exertion/physiology , Adult , Bicycling/physiology , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dietary Proteins/administration & dosage , Female , Humans , Male , Muscle Relaxation/physiology , Muscle Weakness/physiopathology , Nutrition Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...