Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2400203, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774999

ABSTRACT

The limited recapitulation of critical cancer features in 2D cultures causes poor translatability of preclinical results from in vitro assays to in vivo tumor models. This contributes to slow drug development with a low success rate. 3D cultures better recapitulate the tumor microenvironment, enabling more accurate predictions when screening drug candidates and improving the development of chemotherapeutics. Platinum (Pt) (IV) compounds are promising prodrugs designed to reduce the severe systemic toxicity of widely used Food and Drug Administration (FDA)-approved Pt(II) drugs such as cisplatin. Here, this work presents spatiotemporal evaluations in 3D colorectal cancer (CRC) spheroids of mitochondria-targeting Pt(IV) complexes. CRC spheroids provide a greater pathophysiological recapitulation of in vivo tumors than 2D cultures by a marked upregulation of the ABCG2 chemoresistance marker expression. Furthermore, new 3D-staining protocols are introduced to evaluate the real-time decrease in mitochondria membrane potential (ΔΨ) in CRC spheroids, and a Pt-sensing dye to quantify the Pt mitochondrial accumulation. Finally, this work demonstrates a correlation between in vitro results and the efficacy of the compounds in vivo. Overall, the CRC spheroids represent a fast and cost-effective model to assess the behavior of Pt compounds in vitro and predict their translational potential in CRC treatment.

2.
Front Oncol ; 13: 1148930, 2023.
Article in English | MEDLINE | ID: mdl-37469395

ABSTRACT

Colorectal cancer (CRC) is a leading cause of death worldwide. Improved preclinical tumor models are needed to make treatment screening clinically relevant and address disease mortality. Advancements in 3D cell culture have enabled a greater recapitulation of the architecture and heterogeneity of the tumor microenvironment (TME). This has enhanced their pathophysiological relevance and enabled more accurate predictions of tumor progression and drug response in patients. An increasing number of 3D CRC spheroid models include cell populations such as cancer-associated fibroblasts (CAFs), endothelial cells (ECs), immune cells, and gut bacteria to better mimic the in vivo regulation of signaling pathways. Furthermore, cell heterogeneity within the 3D spheroid models enables the identification of new therapeutic targets to develop alternative treatments and test TME-target therapies. In this mini review, we present the advances in mimicking tumor heterogeneity in 3D CRC spheroid models by incorporating CAFs, ECs, immune cells, and gut bacteria. We introduce how, in these models, the diverse cells influence chemoresistance and tumor progression of the CRC spheroids. We also highlight important parameters evaluated during drug screening in the CRC heterocellular spheroids.

3.
Pharmaceutics ; 14(8)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36015364

ABSTRACT

In drug delivery, the development of nanovesicles that combine both synthetic and cellular components provides added biocompatibility and targeting specificity in comparison to conventional synthetic carriers such as liposomes. Produced through the fusion of U937 monocytes' membranes and synthetic lipids, our nano-cell vesicle technology systems (nCVTs) showed promising results as targeted cancer treatment. However, no investigation has been conducted yet on the immunogenic profile and the uptake mechanisms of nCVTs. Hence, this study was aimed at exploring the potential cytotoxicity and immune cells' activation by nCVTs, as well as the routes through which cells internalize these biohybrid systems. The endocytic pathways were selectively inhibited to establish if the presence of cellular components in nCVTs affected the internalization route in comparison to both liposomes (made up of synthetic lipids only) and nano-cellular membranes (made up of biological material only). As a result, nCVTs showed an 8-to-40-fold higher cellular internalization than liposomes within the first hour, mainly through receptor-mediated processes (i.e., clathrin- and caveolae-mediated endocytosis), and low immunostimulatory potential (as indicated by the level of IL-1α, IL-6, and TNF-α cytokines) both in vitro and in vivo. These data confirmed that nCVTs preserved surface cues from their parent U937 cells and can be rationally engineered to incorporate ligands that enhance the selective uptake and delivery toward target cells and tissues.

4.
Int J Pharm ; 608: 121073, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34481887

ABSTRACT

A growing number of nanomedicines entered the clinical trials and improved our understanding of the in vivo responses expected in humans. The in vitro drug release represents an important critical quality attribute involved in pharmacokinetics. Establishing in vitro-in vivo relationships for nanomedicines requires a careful analysis of the clinical data with respect to the unique differences between drugs and nanomedicines. Also, the biorelevant assay must reflect the release mechanism of the carrier. Four drug delivery systems of doxorubicin were evaluated for their in vitro release behavior under biorelevant conditions using the dispersion releaser. The pharmacokinetics observed during the first-in-men clinical trials were analyzed using a custom-made physiologically-based nanocarrier biopharmaceutics model. The drug product Lipodox® and the clinical candidate NanoCore-7.4 were evaluated to validate the model. Afterward, the in vivo performances of the preclinical candidates NanoCore-6.4 and doxorubicin-loaded nano-cellular vesicle technology systems (an extracellular vesicle preparation) were predicted. In vitro and in vivo release were in good correlation as indicated by the coefficients of determination of 0.98648 (NanoCore-7.4) and 0.94107 (Lipodox®). The predictions required an estimation of the carrier half-life in blood circulation leading to considerable uncertainty. Still, the simulations narrow down the possible scenarios in the clinical evaluation of nanomedicines and provide a valuable addition to animal studies.


Subject(s)
Doxorubicin , Pharmaceutical Preparations , Animals , Biopharmaceutics , Drug Delivery Systems , Drug Liberation , Humans
5.
Angew Chem Int Ed Engl ; 58(40): 14082-14088, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31270918

ABSTRACT

We present an economical catalytic procedure to convert readily available 1,2-diaminobenzenes and terminal epoxides into valuable 1,2,3,4-tetrahydroquinoxalines in a highly enantioselective fashion. This procedure operates through relay zinc and iridium catalysis, and achieves redox-neutral and stereoconvergent production of valuable chiral heterocycles from racemic starting materials with water as the only side product. The use of commercially available reagents and catalysts and a convenient procedure also make this catalytic method attractive for practical application.

SELECTION OF CITATIONS
SEARCH DETAIL
...