Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063152

ABSTRACT

Linoleic acid (LA) is required for neuronal development. We have previously demonstrated sex-specific changes in cardiovascular and hepatic function in rat offspring from mothers consuming a high-LA diet, with some effects associated with reduced LA concentration in the postnatal diet. At this time, the impact of a high-maternal-LA diet on offspring brain development and the potential for the postnatal diet to alter any adverse changes are unknown. Rat offspring from mothers fed low- (LLA) or high-LA (HLA) diets during pregnancy and lactation were weaned at postnatal day 25 (PN25) and fed LLA or HLA diets until sacrifice in adulthood (PN180). In the offspring's brains, the postnatal HLA diet increased docosapentaenoate in males. The maternal HLA diet increased LA, arachidonate, docosapentaenoate, C18:0 dimethylacetal (DMA), C16:0 DMA, C16:0 DMA/C16:0, and C18:0 DMA/C18:0, but decreased eoicosenoate, nervoniate, lignocerate, and oleate in males. Maternal and postnatal HLA diets reduced oleate and vaccenate and had an interaction effect on myristate, palmitoleate, and eicosapentaenoate in males. In females, maternal HLA diet increased eicosadienoate. Postnatal HLA diet increased stearate and docosapentaenoate. Maternal and postnatal HLA diets had an interaction effect on oleate, arachidate, and docosahexaenoic acid (DHA)/omega (n)-6 docosapentaenoic acid (DPA) in females. Postnatal HLA diet decreased DHA/n-6 DPA in males and females. Postnatal HLA diet increased plasma endocannabinoids (arachidonoyl ethanolamide and 2-arachidonoyl glycerol), as well as other N-acyl ethanolamides and testosterone. HLA diet alters brain fatty acids, plasma endocannabinoids, and plasmalogen concentrations in a development-specific and sex-specific manner.


Subject(s)
Brain , Endocannabinoids , Fatty Acids , Linoleic Acid , Plasmalogens , Female , Animals , Male , Pregnancy , Rats , Brain/metabolism , Fatty Acids/blood , Fatty Acids/metabolism , Endocannabinoids/blood , Endocannabinoids/metabolism , Linoleic Acid/blood , Plasmalogens/blood , Plasmalogens/metabolism , Prenatal Exposure Delayed Effects/blood , Sex Characteristics , Sex Factors
2.
Mil Med Res ; 11(1): 49, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044298

ABSTRACT

BACKGROUND: The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response. METHODS: The onset of antidepressant response was assessed through depression-related behavioral paradigms. The signaling mechanism of PACAP in the hippocampal dentate gyrus (DG) was evaluated by utilizing site-directed gene knockdown, pharmacological interventions, or optogenetic manipulations. Overall, 446 mice were used for behavioral and molecular signaling testing. Mice were divided into control or experimental groups randomly in each experiment, and the experimental manipulations included: chronic paroxetine treatments (4, 9, 14 d) or a single treatment of ketamine; social defeat or lipopolysaccharides-injection induced depression models; different doses of PACAP (0.4, 2, 4 ng/site; microinjected into the hippocampal DG); pharmacological intra-DG interventions (CALM and PACAP6-38); intra-DG viral-mediated PACAP RNAi; and opotogenetics using channelrhodopsins 2 (ChR2) or endoplasmic natronomonas halorhodopsine 3.0 (eNpHR3.0). Behavioral paradigms included novelty suppressed feeding test, tail suspension test, forced swimming test, and sucrose preference test. Western blotting, ELISA, or quantitative real-time PCR (RT-PCR) analysis were used to detect the expressions of proteins/peptides or genes in the hippocampus. RESULTS: Chronic administration of the slow-onset antidepressant paroxetine resulted in an increase in hippocampal PACAP expression, and intra-DG blockade of PACAP attenuated the onset of the antidepressant response. The levels of hippocampal PACAP expression were reduced in both two distinct depression animal models and intra-DG knockdown of PACAP induced depression-like behaviors. Conversely, a single infusion of PACAP into the DG region produced a rapid and sustained antidepressant response in both normal and chronically stressed mice. Optogenetic intra-DG excitation of PACAP-expressing neurons instantly elicited antidepressant responses, while optogenetic inhibition induced depression-like behaviors. The longer optogenetic excitation/inhibition elicited the more sustained antidepressant/depression-like responses. Intra-DG PACAP infusion immediately facilitated the signaling for rapid antidepressant response by inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII)-eukaryotic elongation factor 2 (eEF2) and activating the mammalian target of rapamycin (mTOR). Pre-activation of CaMKII signaling within the DG blunted PACAP-induced rapid antidepressant response as well as eEF2-mTOR-brain-derived neurotrophic factor (BDNF) signaling. Finally, acute ketamine treatment upregulated hippocampal PACAP expression, whereas intra-DG blockade of PACAP signaling attenuated ketamine's rapid antidepressant response. CONCLUSIONS: Activation of hippocampal PACAP signaling induces a rapid antidepressant response through the regulation of CaMKII inhibition-governed eEF2-mTOR-BDNF signaling.


Subject(s)
Depression , Hippocampus , Pituitary Adenylate Cyclase-Activating Polypeptide , Signal Transduction , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Signal Transduction/drug effects , Male , Depression/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Disease Models, Animal , Behavior, Animal/drug effects , Paroxetine/pharmacology , Paroxetine/therapeutic use
3.
Asian J Psychiatr ; 96: 104043, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598937

ABSTRACT

Sex differences have been claimed an imperative factor in the optimization of psychiatric treatments. Intermittent theta-burst stimulation (iTBS), a patterned form of repetitive transcranial magnetic stimulation, is a promising non-invasive treatment option. Here, we investigated whether the real-time neural response to iTBS differs between men and women, and which mechanisms may mediate these differences. To this end, we capitalized on a concurrent iTBS/functional near-infrared spectroscopy setup over the left dorsolateral prefrontal cortex, a common clinical target, to test our assumptions. In a series of experiments, we show (1) a biological sex difference in absolute hemoglobin concentrations in the left dorsolateral prefrontal cortex in healthy participants; (2) that this sex difference is amplified by iTBS but not by cognitive tasks; and (3) that the sex difference amplified by iTBS is modulated by stimulation intensity. These results inform future stimulation treatment optimizations towards precision psychiatry.


Subject(s)
Dorsolateral Prefrontal Cortex , Spectroscopy, Near-Infrared , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Female , Male , Adult , Spectroscopy, Near-Infrared/methods , Young Adult , Dorsolateral Prefrontal Cortex/physiology , Sex Characteristics
4.
J Exerc Sci Fit ; 22(4): 278-287, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38618555

ABSTRACT

Background: /Objective. An explosion in global obesity epidemic poses threats to the healthcare system by provoking risks of many debilitating diseases, including cognitive dysfunction. Physical activity has been shown to alleviate the deleterious effects of obesity-associated cognitive deficits across the lifespan. Given the strong neuroprotective role of brain-derived neurotrophic factor (BDNF) and exercise training as a known modulator for its elevation, this systematic review sought to examine the strength of the association between exercise and BDNF levels in healthy people with overweight and obesity. Methods: Six electronic databases (PubMed, MEDLINE, EMBASE, Web of Science, Ovid Nursing Database, and SPORTDiscus) were searched from their inceptions through December 2022. The primary outcome of interest was BDNF levels. Interventional studies (randomized and quasi-experimental) with English full text available were included. Risk of bias of the included studies was assessed using the Physiotherapy Evidence Database Scale. Data were extracted for meta-analyses by random-effects models. Results: Thirteen studies (n = 750), of which 69.2% (9/13) had low risk of bias, were included. In the meta-analysis, exercise interventions had no significant effect on resting BDNF levels (standardized mean difference: -0.30, 95% CI -0.80 to 0.21, P = 0.25). Subgroup analyses also indicated no effects of age and types of control groups being compared on moderating the association. Conclusion: To further inform the role of BDNF in obesity-related cognitive functioning, rigorous studies with larger samples of participants and raw data available were imperatively deserved.

5.
Article in English | MEDLINE | ID: mdl-37047984

ABSTRACT

Chemotherapy-induced cognitive impairment (chemobrain) and muscle wasting (cachexia) are persisting side effects which adversely affect the quality of life of cancer survivors. We therefore investigated the efficacy of physical exercise as a non-pharmacological intervention to reverse the adverse effects of chemotherapy. We examined whether physical exercise in terms of voluntary wheel running could prevent chemotherapy-induced cognitive and motor impairments in mice treated with the multi-kinase inhibitor sorafenib. Adult male BALB/c mice were subdivided into runner and non-runner groups and orally administered with sorafenib (60 mg/kg) or vehicle continuously for four weeks. Mice could freely access the running wheel anytime during sorafenib or vehicle treatment. We found that sorafenib treatment reduced body weight gain (% of change, vehicle: 3.28 ± 3.29, sorafenib: -9.24 ± 1.52, p = 0.0004), impaired hippocampal-dependent spatial memory in the Y maze (exploration index, vehicle: 35.57 ± 11.38%, sorafenib: -29.62 ± 7.90%, p < 0.0001), increased anhedonia-like behaviour in the sucrose preference test (sucrose preference, vehicle: 66.57 ± 3.52%, sorafenib: 44.54 ± 4.25%, p = 0.0005) and impaired motor skill acquisition in rotarod test (latency to fall on day 1: 37.87 ± 8.05 and day 2: 37.22 ± 12.26 s, p > 0.05) but did not induce muscle wasting or reduce grip strength. Concomitant voluntary running reduced anhedonia-like behaviour (sucrose preference, sedentary: 44.54 ± 4.25%, runners: 59.33 ± 4.02%, p = 0.0357), restored impairment in motor skill acquisition (latency to fall on day 1: 50.85 ± 15.45 and day 2: 168.50 ± 37.08 s, p = 0.0004), but failed to rescue spatial memory deficit. Immunostaining results revealed that sorafenib treatment did not affect the number of proliferating cells and immature neurons in the hippocampal dentate gyrus (DG), whereas running significantly increased cell proliferation in both vehicle- (total Ki-67+ cells, sedentary: 16,687.34 ± 72.63, exercise: 3320.03 ± 182.57, p < 0.0001) and sorafenib-treated mice (Ki-67+ cells in the ventral DG, sedentary: 688.82.34 ± 38.16, exercise: 979.53 ± 73.88, p < 0.0400). Our results suggest that spatial memory impairment and anhedonia-like behaviour precede the presence of muscle wasting, and these behavioural deficits are independent of the changes in adult hippocampal neurogenesis. Running effectively prevents body weight loss, improves motor skill acquisition and reduces anhedonia-like behaviour associated with increased proliferating cells and immature neurons in DG. Taken together, they support physical exercise rehabilitation as an effective strategy to prevent chemotherapy side effects in terms of mood dysregulation and motor deficit.


Subject(s)
Anhedonia , Motor Activity , Mice , Male , Animals , Motor Activity/physiology , Sorafenib , Ki-67 Antigen , Quality of Life , Maze Learning/physiology , Hippocampus , Memory Disorders , Neurogenesis/physiology , Cognition/physiology , Mice, Inbred C57BL
6.
Mol Neurodegener ; 18(1): 26, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081555

ABSTRACT

Understanding and treating Alzheimer's disease (AD) has been a remarkable challenge for both scientists and physicians. Although the amyloid-beta and tau protein hypothesis have largely explained the key pathological features of the disease, the mechanisms by which such proteins accumulate and lead to disease progression are still unknown. Such lack of understanding disrupts the development of disease-modifying interventions, leaving a therapeutic gap that remains unsolved. Nonetheless, the recent discoveries of the glymphatic pathway and the meningeal lymphatic system as key components driving central solute clearance revealed another mechanism underlying AD pathogenesis. In this regard, this narrative review integrates the glymphatic and meningeal lymphatic systems as essential components involved in AD pathogenesis. Moreover, it discusses the emerging evidence suggesting that nutritional supplementation, non-invasive brain stimulation, and traditional Chinese medicine can improve the pathophysiology of the disease by increasing glymphatic and/or meningeal lymphatic function. Given that physical exercise is a well-regarded preventive and pro-cognitive intervention for dementia, we summarize the evidence suggesting the glymphatic system as a mediating mechanism of the physical exercise therapeutic effects in AD. Targeting these central solute clearance systems holds the promise of more effective treatment strategies.


Subject(s)
Alzheimer Disease , Glymphatic System , Humans , Alzheimer Disease/metabolism , Brain/metabolism , Lymphatic System/metabolism , Lymphatic System/pathology , Glymphatic System/metabolism , Glymphatic System/pathology , Amyloid beta-Peptides/metabolism
7.
Biomedicines ; 11(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36830788

ABSTRACT

(1) Background: Adiponectin is an adipocyte-secreted hormone that has antidepressant- and anxiolytic-like effects in preclinical studies. Here, we investigated the antidepressant- and anxiolytic-like effects of sub-chronic treatment with AdipoRon, an adiponectin receptor agonist, and its potential linkage to changes in hippocampal adult neurogenesis and synaptic plasticity. (2) Methods: Different cohorts of wild-type C57BL/6J and CamKIIα-Cre male mice were treated with sub-chronic (7 days) AdipoRon, followed by behavioral, molecular, and electrophysiological experiments. (3) Results: 7-day AdipoRon treatment elicited antidepressant- and anxiolytic-like effects but did not affect hippocampal neurogenesis. AdipoRon treatment reduced hippocampal brain-derived neurotrophic factor (BDNF) levels, neuronal activation in the ventral dentate gyrus, and long-term potentiation of the perforant path. The knockdown of N-methyl-D-aspartate (NMDA) receptor subunits GluN2A and GluN2B in the ventral hippocampus did not affect the antidepressant- and anxiolytic-like effects of AdipoRon. (4) Conclusions: Increasing adiponectin signaling through sub-chronic AdipoRon treatment results in antidepressant- and anxiolytic-like effects independent of changes in hippocampal structural and synaptic function.

8.
Psychiatry Res ; 319: 115005, 2023 01.
Article in English | MEDLINE | ID: mdl-36565548

ABSTRACT

This 3-month randomized psychoeducation-controlled trial (RCT) of exercise was undertaken in young adolescents with subthreshold depression to examine the impact on gut microbiota. Participants (aged 12-14 years) were randomly assigned to an exercise or a psychoeducation-controlled group. The exercise intervention arm took moderate-intensity exercise, comprised of 30 min of running per day, 4 days a week for 3 months. Psychoeducation intervention consisted of 6 sessions of group activity including gaming, reading, and singing. The gut microbiota was assessed by metagenomic sequencing. After 3-month moderate-intensity exercise, the intervention group increased the relative abundance of Coprococcus, Blautia, Dorea, Tyzzerella at the genus level, as well as Tyzzerella nexilis, Ruminococcus obeum at species level when compared to the psychoeducation-controlled group. Moreover, EggNOG analyses showed that the defense and signal transduction mechanism were highly enriched after the active intervention, and changes were correlated with improvements in depressive symptoms measured by Chinese Patient Depression Questionnaire 9. The KEGG pathway of neurodegenerative diseases was depleted in the microbiome in young adolescents with subthreshold depression after exercise intervention. This 3-month RCT suggests that at both the genus and species levels, aerobic group exercise intervention improved in depressive symptoms and revealed changes in gut microbiota suggesting beneficial effects.


Subject(s)
Depression , Gastrointestinal Microbiome , Humans , Adolescent , Depression/therapy , Exercise
9.
Front Neuroendocrinol ; 68: 101050, 2023 01.
Article in English | MEDLINE | ID: mdl-36410619

ABSTRACT

Humans experience multiple biological and emotional changes under acute stress. Adopting a multi-systemic approach, we summarized 61 studies on healthy people's endocrinological, physiological, immunological and emotional responses to the Trier Social Stress Test. We found salivary cortisol and negative mood states were the most sensitive markers to acute stress and recovery. Biomarkers such as heart rate and salivary alpha-amylase also showed sensitivity to acute stress, but the numbers of studies were small. Other endocrinological (e.g., dehydroepiandrosterone), inflammatory (C-Reactive Protein, Interleukin-6) and physiological (e.g., skin conductance level) measures received modest support as acute stress markers. Salivary cortisol showed some associations with mood measures (e.g., state anxiety) during acute stress and recovery, and heart rate showed preliminary positive relationship with calmness ratings during response to TSST, but the overall evidence was mixed. While further research is needed, these findings provide updated and comprehensive knowledge on the integrated psychobiological response profiles to TSST.


Subject(s)
Hydrocortisone , Stress, Psychological , Humans , Hydrocortisone/metabolism , Stress, Psychological/metabolism , Emotions , Anxiety/metabolism , Psychological Tests
10.
Asian J Psychiatr ; 78: 103307, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36332319

ABSTRACT

OBJECTIVES: Hippocampus-related functional alteration in genetically at-risk individuals may reflect an endophenotype of a mood disorder. Herein, we performed a prospective study to investigate whether baseline hippocampus functional connectivity (FC) in offspring of patients with bipolar disorder (BD) would predict subsequent conversion to mood disorder. METHODS: Eighty bipolar offspring and 40 matched normal controls (NC) underwent resting state functional MRI (rsfMRI) scanning on a 3.0 Tesla MR scanner. The offspring were subdivided into asymptomatic offspring (AO) (n = 41) and symptomatic offspring (SO) (n = 39) according to whether they manifested subthreshold mood symptoms. After identifying the different hippocampus FCs between the AO and SO, a logistic regression analysis was conducted to investigate whether the baseline hippocampus FCs predicted a future mood disorder during a 6-year follow-up. RESULTS: We identified seven baseline para/hippocampus FCs that showed differences between AO and SO, which were entered as predictive features in the logistic regressive model. Of the 80 bipolar offspring entering the analysis, the FCs between left hippocampus and left precuneus, and between right hippocampus and left posterior cingulate, showed a discriminative capacity for predicting future mood disorder (area-under-curve, or AUC=75.76 % and 75.00 % respectively), and for predicting BD onset (AUC=77.46 % and 81.63 %, respectively). CONCLUSIONS: The present findings revealed high predictive utility of the hippocampus resting state FCs for future mood disorder and BD onset in individuals at familial risk. These neural markers can potentially improve early detection of individuals carrying particularly high risk for future mood disorder.


Subject(s)
Bipolar Disorder , Child of Impaired Parents , Humans , Bipolar Disorder/diagnostic imaging , Prospective Studies , Mood Disorders , Parents , Magnetic Resonance Imaging , Hippocampus/diagnostic imaging
11.
Brain Plast ; 8(1): 79-96, 2022.
Article in English | MEDLINE | ID: mdl-36448043

ABSTRACT

Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer's disease. Here, we aim at linking the adiponectin's neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.

12.
Ageing Res Rev ; 82: 101767, 2022 12.
Article in English | MEDLINE | ID: mdl-36280211

ABSTRACT

A growing body of evidence has shown that people with chronic low back pain (CLBP) demonstrate significantly greater declines in multiple cognitive domains than people who do not have CLBP. Given the high prevalence of CLBP in the ever-growing aging population that may be more vulnerable to cognitive decline, it is important to understand the mechanisms underlying the accelerated cognitive decline observed in this population, so that proper preventive or treatment approaches can be developed and implemented. The current scoping review summarizes what is known regarding the potential mechanisms underlying suboptimal cognitive performance and cognitive decline in people with CLBP and discusses future research directions. Five potential mechanisms were identified based on the findings from 34 included studies: (1) altered activity in the cortex and neural networks; (2) grey matter atrophy; (3) microglial activation and neuroinflammation; (4) comorbidities associated with CLBP; and (5) gut microbiota dysbiosis. Future studies should deepen the understanding of mechanisms underlying this association so that proper prevention and treatment strategies can be developed.


Subject(s)
Cognitive Dysfunction , Low Back Pain , Humans , Aged , Low Back Pain/psychology , Low Back Pain/therapy , Magnetic Resonance Imaging , Cerebral Cortex , Gray Matter
13.
J Clin Psychiatry ; 83(6)2022 09 21.
Article in English | MEDLINE | ID: mdl-36149839

ABSTRACT

Background: Bipolar disorder (BD) is a highly heritable mood disorder. Activated low-grade inflammation may not only play an adverse role in the pathophysiology of BD, but also contribute to a resilience process. The neuroinflammatory processes may underlie the attention deficit and alteration of gray matter volume (GMV) in the early stage and premorbid period of BD. Also, the differential inflammation-brain relationship may be identified as biological markers for BD pathology or resilience.Methods: The present data were collected between March 2013 and June 2016. Sixty-four offspring of BD patients were recruited and subdivided into asymptomatic (n = 33, mean age = 17.8 years) and symptomatic (n = 31, mean age = 16.2 years) groups according to whether they manifested subthreshold mood symptoms. The diagnosis of BD was confirmed according to DSM-IV criteria. C-reactive protein (CRP) level, attention functioning, and GMV data were measured by ELISA, the Continuous Performance Test-Identical Pair test (CPT-IP), and 3.0 T magnetic resonance imaging, respectively. Their relationships were examined with mediation and moderation analyses.Results: We observed a higher level of CRP and poorer attention in the symptomatic group than the asymptomatic group and found a significant group × CRP interactive effect on GMV in regions spanning right precentral and postcentral gyri (P = .043). CRP levels negatively mediated the relationship between the group and CPT-IP scores, and the group marginally moderated the relationship between pre/postcentral gyri volumes and CPT-IP scores (P = .05).Conclusions: Symptomatic and asymptomatic bipolar offspring manifested differential inflammation-GMV-attention relationships, which may represent, respectively, an endophenotype or a resilience process for BD.


Subject(s)
Bipolar Disorder , Adolescent , Biomarkers , Brain , C-Reactive Protein , Humans , Inflammation , Magnetic Resonance Imaging/methods
14.
Brain Sci ; 12(4)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35447993

ABSTRACT

Previous studies have shown that immunological factors are involved in the pathogenesis of autism spectrum disorders (ASDs). The present study examined whether immunological abnormalities are associated with cognitive and behavioral deficits in children with ASD and whether children with ASD show different immunological biomarkers and brain-derived neurotrophic factor BDNF levels than typically developing (TD) children. Sixteen children with TD and 18 children with ASD, aged 6-18 years, voluntarily participated in the study. Participants' executive functions were measured using neuropsychological tests, and behavioral measures were measured using parent ratings. Immunological measures were assessed by measuring the participants' blood serum levels of chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5). Children with ASD showed greater deficits in cognitive functions as well as altered levels of immunological measures when compared to TD children, and their cognitive functions and behavioral deficits were significantly associated with increased CCL5 levels and decreased BDNF levels. These results provide evidence to support the notion that altered immune functions and neurotrophin deficiency are involved in the pathogenesis of ASD.

15.
Br J Pharmacol ; 179(16): 4078-4091, 2022 08.
Article in English | MEDLINE | ID: mdl-35362097

ABSTRACT

BACKGROUND AND PURPOSE: Current mainstream antidepressants have limited efficacy with a delayed onset of action. Yueju, a herbal medicine, has a rapid antidepressant action. Identification of the active ingredients in Yueju and the mechanism/s involved was carried out. EXPERIMENTAL APPROACH: Key molecule/s and compounds involved in this antidepressant action was identified by transcriptomic and HPLC analysis, respectively. Antidepressant effects were evaluated using various behavioural experiments. The signalling involved was assessed using site-directed pharmacological intervention or optogenetic manipulation. KEY RESULTS: Transcriptomic analysis showed that Yueju up-regulated pituitary adenylate cyclase activating polypeptide (PACAP) expression in the hippocampus. Two iridoids, geniposide and shanzhiside methyl ester, were identified and quantified from Yueju. Only co-treatment with both, at an equivalent concentrations found in Yueju, increased PACAP expression and elicited a rapid antidepressant action, which were blocked by intra-dentate gyrus infusion of a PACAP antagonist or optogenetic inactivation of PACAP expressing neurons. Geniposide and shanzhiside methyl ester co-treatment rapidly inhibited CaMKII phosphorylation and enhanced mTOR/4EBP1/P70S6k/BDNF ignalling, while intra-dentate gyrus infusions of a CaMKII activator blunted the rapid antidepressant action and BDNF expression up-regulation induced by the co-treatment. A single co-treatment of them rapidly improved depression-like behaviours and up-regulated hippocampal PACAP signalling in the repeated corticosterone-induced depression model, further confirming the involvement of PACAP. CONCLUSION AND IMPLICATIONS: Geniposide and shanzhiside methyl ester co-treatment had a synergistic rapid onset antidepressant action by triggering hippocampal PACAP activity and associated CaMKII-BDNF signalling. This mechanism could be targeted for development of fast onset antidepressants.


Subject(s)
Brain-Derived Neurotrophic Factor , Pituitary Adenylate Cyclase-Activating Polypeptide , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Esters/metabolism , Esters/pharmacology , Hippocampus , Iridoids/metabolism , Iridoids/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
16.
Neuroscience ; 492: 67-81, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35413386

ABSTRACT

A number of studies has explored a positive correlation between low levels of serum Vitamin D3 (VD; cholecalciferol) and development of neurodegenerative diseases including Huntington's disease (HD). In the present study, the prophylactic effect of VD on motor dysfunction was studied in an experimental model of HD. An HD-like syndrome was induced in male C57BL/6 mice through an intraperitoneal injection (i.p) of 3-NP for 3 consecutive doses at 12 h interval of time as described previously (Amende et al. 2005). This study investigated thein-vivotherapeutic potential of VD (500 IU/kg/day) supplementation on movement, motor coordination, motor activity and biochemical changes in this HD model. Mice were divided into four groups: Group I: Control (saline); Group II: 3-NP induced HD (HD); Group III: Vitamin D3 (VD) and Group IV: 3-NP induced + post Vitamin D3 injection (HD + VD). All groups of mice were tested for locomotion, gait analysis and rotarod performances over a span of 30-days. VD administration rescued locomotor dysfunction and neuromuscular impairment in HD mice with no change in gait dynamics. In addition, administration of VD to 3-NP treated mice led to a significant enhancement in the expression of key neurotrophic factors including brain-derived neurotrophic factor (BDNF) and nerve-growth factor (NGF), the Vitamin D receptor (VDR), and antioxidant markers (catalases [Cat] and glutathione peroxidase [GpX4]) in the striatum, suggesting a detoxification effect of VD. Altogether, our results show that VD supplementation induces survival signals, diminishes oxidative stress, and reduces movement and motor dysfunction in HD.


Subject(s)
Antioxidants , Huntington Disease , Animals , Antioxidants/metabolism , Cholecalciferol/adverse effects , Huntington Disease/metabolism , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factors , Nitro Compounds , Propionates , Rats , Rats, Wistar
17.
Front Behav Neurosci ; 16: 828258, 2022.
Article in English | MEDLINE | ID: mdl-35299696

ABSTRACT

Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.

18.
Front Psychiatry ; 13: 1049130, 2022.
Article in English | MEDLINE | ID: mdl-36606127

ABSTRACT

Introduction: Intermittent theta-burst stimulation (iTBS) is a non-invasive brain stimulation paradigm that has demonstrated promising therapeutic benefits for a variety of neuropsychiatric disorders. It has recently garnered widespread favor among researchers and clinicians, owing to its comparable potentiation effects as conventional high-frequency repetitive transcranial magnetic stimulation (rTMS), but administered in a much shorter time frame. However, there is still a lack of agreement over the optimal stimulation intensity, particularly when targeting the prefrontal regions. The objective of this study was to systematically investigate the influence of different stimulation intensities of iTBS, applied over the left dorsolateral prefrontal cortex (DLPFC), on brain activity and executive function in healthy adults. Methods: Twenty young healthy adults were enrolled in this randomized cross-over experiment. All participants received a single session iTBS over the left DLPFC at intensities of 50, 70, or 100% of their individual resting motor threshold (RMT), each on separate visits. Functional near-infrared spectroscopy (fNIRS) was used to measure changes of hemoglobin concentrations in prefrontal areas during the verbal fluency task (VFT) before and after stimulation. Results: After stimulation, iTBS to the left DLPFC with 70% RMT maintained the concentration change of oxyhemoglobin (HbO) in the target area during the VFT. In contrast, 50% [t (17) = 2.203, P = 0.042, d = 0.523] and 100% iTBS [t (17) = 2.947, P = 0.009, d = 0.547] significantly decreased change of HbO concentration, indicating an inverse U-shape relationship between stimulation intensity and prefrontal hemodynamic response in healthy young adults. Notably, improved VFT performance was only observed after 70% RMT stimulation [t (17) = 2.511, P = 0.022, d = 0.592]. Moreover, a significant positive correlation was observed between task performance and the difference in HbO concentration change in the targeted area after 70% RMT stimulation (r = 0.496, P = 0.036) but not after 50 or 100% RMT stimulation. Conclusion: The linear relationship between stimulation intensity and behavioral outcomes reported in previous conventional rTMS studies may not be translated to iTBS. Instead, iTBS at 70% RMT may be more efficacious than 100% RMT.

19.
Behav Brain Res ; 416: 113538, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34418475

ABSTRACT

Polyunsaturated fatty acids (PUFAs) play an essential role in brain development. Emerging data have suggested a possible link between an imbalance in PUFAs and cognitive behavioral deficits in offspring. A diet rich in high linoleic acid (HLA), typically from preconception to lactation, leads to an increase in the ratio of omega-6 (n-6) to omega-3 (n-3) fatty acids in the fetus. Arising research has suggested that a deficiency in omega-3 fatty acids is a potential risk factor for inducing autism spectrum disorder (ASD)-like behavioral deficits. However, the impact of a high n- diet during preconception, pregnancy, lactation, and post-weaning on the brain development of adolescent offspring are yet to be determined. This study examined whether consumption of an HLA diet during pregnancy, lactation, and post-weaning induced social and cognitive impairments in female and male offspring rats that resemble autistic phenotypes in humans. Female Wistar Kyoto rats were fed with either HLA or low linoleic acid (LLA) control diet for 10 weeks before mating, then continued with the same diet throughout the pregnancy and lactation period. Female and male offspring at 5 weeks old were subjected to behavioral tests to assess social interaction behavior and depression-/anxiety-like behavior. Our result showed that chronic consumption of an HLA diet did not affect sociability and social recognition memory, but induced depression-like behavior in male but not in female offspring.


Subject(s)
Depression/etiology , Dietary Fats/metabolism , Lactation/drug effects , Linoleic Acid/metabolism , Prenatal Exposure Delayed Effects/metabolism , Weaning , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Dietary Fats/administration & dosage , Fatty Acids, Omega-3/pharmacology , Female , Humans , Lactation/physiology , Linoleic Acid/administration & dosage , Male , Maternal Nutritional Physiological Phenomena/physiology , Pregnancy , Rats , Rats, Inbred WKY
20.
J Affect Disord ; 293: 363-372, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34233229

ABSTRACT

BACKGROUND: Animal and human studies have revealed reciprocal association between exercise and gut-brain axis. However, the clinical evidence from randomized controlled trials (RCT) are still limited to directly assess the effects of aerobic exercise on gut microbiota. To fill this gap, we conducted this 12-week RCT in both groups of adolescents with and without sub-threshold mood symptoms. METHODS: A total of 224 adolescents were randomized to the aerobic exercise intervention or psychoeducation-controlled arm. 49 adolescents with subthreshold symptoms and 142 clinically-well adolescents provided the sample for microbiota assessed by metagenomic sequencing. Aerobic exercise of running at the moderate-intensity for 30 min per day, 5 days a week, were conducted for 12 weeks. RESULTS: Adolescents with subthreshold symptoms had significantly lower beta diversity than clinically-well adolescents in both the exercise intervention and psychoeducation-controlled arms (p<0.05). After intervention, no difference in gut microbiota diversity, phylum, genus, species level abundancies or gut microbial functions were found in both of the symptomatic or non-symptomatic groups. Metagenome-wide association study analysis showed no significant difference in metagenomic linkage groups. LIMITATIONS: The sample size is relatively small. The exercise intensity we employed may be insufficient to result in observable effects on intestinal microbiota. CONCLUSION: We conclude that a 12-week moderate-intensity aerobic exercise intervention showed no significant beneficial effect on the gut microbiota in clinically-well adolescents as well as in adolescents with subthreshold symptoms. The beta diversity of gut microbiota in adolescents with subthreshold mood syndromes may be impaired when compared with clinically-well adolescents.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adolescent , Affect , Animals , Exercise , Gastrointestinal Microbiome/genetics , Humans , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...