Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 351: 847-859, 2022 11.
Article in English | MEDLINE | ID: mdl-36206946

ABSTRACT

Conductive polymers have been investigated as a medium for the transmission of electrical signals in biological tissues, but their capacity to rewire cardiac tissue has not been evaluated. Myocardial tissue is unique in being able to generate an electrical potential at a fixed rate; this potential spreads rapidly among cells to trigger muscle contractions. Tissue injuries result in myocardial fibrosis and subsequent non-uniform conductivity, leading to arrhythmia. Atrial fibrillation (AF) is the most common sustained arrhythmia, associated with disruption of atrial electrical signaling, which can potentially be restored by the epicardial delivery of conductive polymers. In this work, poly-3-amino-4-methoxybenzoic acid, conjugated to gelatin, is fabricated as a membrane (PAMB-G) to support conductive velocities that are close to that of the myocardium. A cross-linked gelatin membrane (Gelatin) is used as a control. The as-fabricated PAMB-G has similar tensile elasticities, determined using the Young's modulus, as contracting myocardium; it can also transmit electrical signals to initiate cardiac cell and tissue excitation. Delivering PAMB-G onto the atrium of a rat AF model shortens AF duration and improves post-AF recovery for the duration of a 28-day-long study. Atrial tissue in the PAMB-G-implanted group has lower impedance, higher conduction velocity, and higher field potential amplitude than that in the Gelatin-implanted group. Therefore, the as-proposed PAMB-G is a suitable medium for restoring proper cardiac electrical signaling in AF hearts.


Subject(s)
Atrial Fibrillation , Rats , Animals , Atrial Fibrillation/drug therapy , Gelatin , Heart Atria , Heart Rate , Polymers
2.
Adv Healthc Mater ; 11(2): e2101838, 2022 01.
Article in English | MEDLINE | ID: mdl-34704404

ABSTRACT

Following myocardial infarction (MI), the resulting fibrotic scar is nonconductive and leads to ventricular dysfunction via electrical uncoupling of the remaining viable cardiomyocytes. The uneven conductive properties between normal myocardium and scar tissue result in arrhythmia, yielding sudden cardiac death/heart failure. A conductive biopolymer, poly-3-amino-4-methoxybenzoic acid-gelatin (PAMB-G), is able to resynchronize myocardial contractions in vivo. Intravenous PAMB-G injections into mice show that it does not cause any acute toxicity, up to the maximum tolerated dose (1.6 mL kg-1 ), which includes the determined therapeutic dose (0.4 mL kg-1 ). There is also no short- or long-term toxicity when PAMB-G is injected into the myocardium of MI rats, with no significant changes in body weight, organ-brain ratio, hematologic, and histological parameters for up to 12 months post-injection. At the therapeutic dose, PAMB-G restores electrical conduction in infarcted rat hearts, resulting in lowered arrhythmia susceptibility and improved cardiac function. PAMB-G is also durable, as mass spectrometry detected the biopolymer for up to 12 months post-injection. PAMB-G did not impact reproductive organ function or offspring characteristics when given intravenously into healthy adult rats. Thus, PAMB-G is a nontoxic, durable, and conductive biomaterial that is able to improve cardiac function for up to 1 year post-implantation.


Subject(s)
Myocardial Infarction , Polymers , Animals , Biocompatible Materials/chemistry , Electric Conductivity , Mice , Myocardial Infarction/therapy , Myocardium/pathology , Polymers/therapeutic use , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...