Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 513(3): 714-720, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30987826

ABSTRACT

Pellino1 is an E3 ubiquitin ligase that plays a key role in positive regulation of innate immunity signaling, specifically required for the production of interferon when induced by viral double-stranded RNA. We report the identification of the tumor suppressor protein, p53, as a binding partner of Pellino1. Their interaction has a Kd of 42 ±â€¯2 µM and requires phosphorylation of Thr18 within p53 and association with the forkhead-associated (FHA) domain of Pellino1. We employed laser micro-irradiation and live cell microscopy to show that Pellino1 is recruited to newly occurring DNA damage sites, via its FHA domain. Mutation of a hitherto unidentified nuclear localization signal within the N-terminus of Pellino1 led to its exclusion from the nucleus. This study provides evidence that Pellino1 translocates to damaged DNA in the nucleus and has a functional role in p53 signaling and the DNA damage response.


Subject(s)
DNA Damage , Nuclear Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line, Tumor , HEK293 Cells , Humans , Models, Molecular , Nuclear Proteins/analysis , Protein Binding , Protein Interaction Domains and Motifs , Tumor Suppressor Protein p53/analysis , Ubiquitin-Protein Ligases/analysis
2.
Sci Rep ; 7(1): 14816, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29093465

ABSTRACT

Vaults are naturally occurring ovoid nanoparticles constructed from a protein shell that is composed of multiple copies of major vault protein (MVP). The vault-interacting domain of vault poly(ADP-ribose)-polymerase (INT) has been used as a shuttle to pack biomolecular cargo in the vault lumen. However, the interaction between INT and MVP is poorly understood. It is hypothesized that the release rate of biomolecular cargo from the vault lumen is related to the interaction between MVP and INT. To tune the release of molecular cargos from the vault nanoparticles, we determined the interactions between the isolated INT-interacting MVP domains (iMVP) and wild-type INT and compared them to two structurally modified INT: 15-amino acid deletion at the C terminus (INTΔC15) and histidine substituted at the interaction surface (INT/DSA/3 H) to impart a pH-sensitive response. The apparent affinity constants determined using surface plasmon resonance (SPR) biosensor technology are 262 ± 4 nM for iMVP/INT, 1800 ± 160 nM for iMVP/INTΔC15 at pH 7.4. The INT/DSA/3 H exhibits stronger affinity to iMVP (K Dapp = 24 nM) and dissociates at a slower rate than wild-type INT at pH 6.0.


Subject(s)
Poly(ADP-ribose) Polymerases/metabolism , Protein Interaction Maps , Vault Ribonucleoprotein Particles/metabolism , Animals , Hydrogen-Ion Concentration , Models, Molecular , Poly(ADP-ribose) Polymerases/chemistry , Protein Interaction Domains and Motifs , Rats , Vault Ribonucleoprotein Particles/chemistry
3.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1525-1536, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28641978

ABSTRACT

Angiopoietin-like 4 (ANGPTL4) is a secretory protein that can be cleaved to form an N-terminal and a C-terminal protein. Studies performed thus far have linked ANGPTL4 to several cancer-related and metabolic processes. Notably, several point mutations in the C-terminal ANGPTL4 (cANGPTL4) have been reported, although no studies have been performed that ascribed these mutations to cancer-related and metabolic processes. In this study, we compared the characteristics of tumors with and without wild-type (wt) cANGPTL4 and tumors with cANGPTL4 bearing the T266M mutation (T266M cANGPTL4). We found that T266M cANGPTL4 bound to integrin α5ß1 with a reduced affinity compared to wt, leading to weaker activation of downstream signaling molecules. The mutant tumors exhibited impaired proliferation, anoikis resistance, and migratory capability and had reduced adenylate energy charge. Further investigations also revealed that cANGPTL4 regulated the expression of Glut2. These findings may explain the differences in the tumor characteristics and energy metabolism observed with the cANGPTL4 T266M mutation compared to tumors without the mutation.


Subject(s)
Angiopoietin-Like Protein 4/genetics , Glucose Transporter Type 2/genetics , Integrin alpha5beta1/genetics , Liver Neoplasms/genetics , Stomach Neoplasms/genetics , Angiopoietin-Like Protein 4/metabolism , Animals , Anoikis/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Circular Dichroism , Energy Metabolism/genetics , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Glucose Transporter Type 2/metabolism , Hep G2 Cells , Humans , Integrin alpha5beta1/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mutagenesis, Site-Directed , Mutation , Neoplasm Invasiveness/genetics , Polymorphism, Single Nucleotide , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
J Am Chem Soc ; 138(1): 402-7, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26684612

ABSTRACT

Bacterial biofilms are responsible for a wide range of persistent infections. In the clinic, diagnosis of biofilm-associated infections relies heavily on culturing methods, which fail to detect nonculturable bacteria. Identification of novel fluorescent probes for biofilm imaging will greatly facilitate diagnosis of pathogenic bacterial infection. Herein, we report a novel fluorescent probe, CDy11 (compound of designation yellow 11), which targets amyloid in the Pseudomonas aeruginosa biofilm matrix through a diversity oriented fluorescent library approach (DOFLA). CDy11 was further demonstrated for in vivo imaging of P. aeruginosa in implant and corneal infection mice models.


Subject(s)
Amyloid/chemistry , Biofilms , Fluorescent Dyes , Pseudomonas aeruginosa/chemistry
5.
PLoS One ; 10(4): e0123167, 2015.
Article in English | MEDLINE | ID: mdl-25901570

ABSTRACT

MicroRNAs (miRNAs) are known to play a part in regulating important cellular processes. They generally perform their regulatory function through their binding with mRNAs, ultimately leading to a repression of target protein expression levels. However, their roles in cellular processes are poorly understood due to the limited understanding of their specific cellular targets. Aberrant levels of miRNAs have been found in hepatocellular carcinoma (HCC) including miR-181a. Using bioinformatics analysis, cyclin-dependent kinase inhibitor 1B (CDKN1ß) and transcriptional factor E2F7 were identified as potential targets of miR-181a. Validation analysis using surface plasmon resonance (SPR) showed a positive binding between miR-181a and the 3'UTRs of these two potential mRNA targets. In vivo luciferase assay further confirmed the positive miR-181a:mRNA bindings, where a significant decrease in luciferase activity was detected when HepG2 cells were co-transfected with the 3'UTR-containing reporter plasmids and miR-181a. The potential impact of miR-181a binding to its specific targets on the general cellular behavior was further investigated. Results showed that miR-181a significantly activated the MAPK/JNK pathway which regulates cell proliferation, supporting our recently reported findings. Inhibition of miR-181a, on the other hand, abolished the observed activation. Our findings open up a new approach in designing targeted functional analysis of miRNAs in cellular processes, through the identification of their cellular targets.


Subject(s)
Computational Biology/methods , MicroRNAs/genetics , MicroRNAs/metabolism , 3' Untranslated Regions/genetics , Bone Morphogenetic Protein Receptors, Type II/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , E2F7 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic/genetics , Hep G2 Cells , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Smad Proteins/metabolism
6.
Nat Immunol ; 16(5): 505-16, 2015 May.
Article in English | MEDLINE | ID: mdl-25751747

ABSTRACT

A cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis. Direct methylation of talin, a key regulatory molecule in cell migration, by Ezh2 disrupted the binding of talin to F-actin and thereby promoted the turnover of adhesion structures. This regulatory effect was abolished by targeted disruption of the interactions of Ezh2 with the cytoskeletal-reorganization effector Vav1. Our studies reveal an unforeseen extranuclear function for Ezh2 in regulating adhesion dynamics, with implications for leukocyte migration, immune responses and potentially pathogenic processes.


Subject(s)
Cell Nucleus/metabolism , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Neutrophils/immunology , Polycomb Repressive Complex 2/metabolism , Talin/metabolism , Actins/metabolism , Animals , Cell Adhesion/genetics , Cell Movement , Cells, Cultured , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein , Humans , Lymphocyte Activation/genetics , Methylation , Mice , Mice, Knockout , Polycomb Repressive Complex 2/genetics , Protein Binding/genetics , Proto-Oncogene Proteins c-vav/metabolism , Talin/genetics , Transendothelial and Transepithelial Migration/genetics
7.
J Biol Chem ; 290(10): 6457-69, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25586180

ABSTRACT

The mechanism by which extracellular metabolites, including redox mediators and quorum-sensing signaling molecules, traffic through the extracellular matrix of biofilms is poorly explored. We hypothesize that functional amyloids, abundant in natural biofilms and possessing hydrophobic domains, retain these metabolites. Using surface plasmon resonance, we demonstrate that the quorum-sensing (QS) molecules, 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone, and the redox mediator pyocyanin bind with transient affinity to functional amyloids from Pseudomonas (Fap). Their high hydrophobicity predisposes them to signal-amyloid interactions, but specific interactions also play a role. Transient interactions allow for rapid association and dissociation kinetics, which make the QS molecules bioavailable and at the same time secure within the extracellular matrix as a consequence of serial bindings. Retention of the QS molecules was confirmed using Pseudomonas aeruginosa PAO1-based 2-heptyl-3-hydroxy-4(1H)-quinolone and N-(3-oxododecanoyl)-l-homoserine lactone reporter assays, showing that Fap fibrils pretreated with the QS molecules activate the reporters even after sequential washes. Pyocyanin retention was validated by electrochemical analysis of pyocyanin-pretreated Fap fibrils subjected to the same washing process. Results suggest that QS molecule-amyloid interactions are probably important in the turbulent environments commonly encountered in natural habitats.


Subject(s)
Amyloid/chemistry , Biofilms , Pseudomonas aeruginosa/chemistry , Quorum Sensing/genetics , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/chemistry , Amyloid/metabolism , Gene Expression Regulation, Bacterial , Humans , Protein Folding , Pseudomonas aeruginosa/genetics
8.
J Virol ; 89(7): 3471-83, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25589636

ABSTRACT

UNLABELLED: Flavivirus RNA synthesis is mediated by a multiprotein complex associated with the endoplasmic reticulum membrane, named the replication complex (RC). Within the flavivirus RC, NS4B, an integral membrane protein with a role in virulence and regulation of the innate immune response, binds to the NS3 protease-helicase. NS4B modulates the RNA helicase activity of NS3, but the molecular details of their interaction remain elusive. Here, we used dengue virus (DENV) to map the determinants for the NS3-NS4B interaction. Coimmunoprecipitation and an in situ proximity ligation assay confirmed that NS3 colocalizes with NS4B in both DENV-infected cells and cells coexpressing both proteins. Surface plasmon resonance demonstrated that subdomains 2 and 3 of the NS3 helicase region and the cytoplasmic loop of NS4B are required for binding. Using nuclear magnetic resonance (NMR), we found that the isolated cytoplasmic loop of NS4B is flexible, with a tendency to form a three-turn α-helix and two short ß-strands. Upon binding to the NS3 helicase, 12 amino acids within the cytoplasmic loop of NS4B exhibited line broadening, suggesting a participation in the interaction. Sequence alignment showed that 4 of these 12 residues are strictly conserved across different flaviviruses. Mutagenesis analysis showed that three (Q134, G140, and N144) of the four evolutionarily conserved NS4B residues are essential for DENV replication. The mapping of the NS3/NS4B-interacting regions described here can assist the design of inhibitors that disrupt their interface for antiviral therapy. IMPORTANCE: NS3 and NS4B are essential components of the flavivirus RC. Using DENV as a model, we mapped the interaction between the viral NS3 and NS4B proteins. The subdomains 2 and 3 of NS3 helicase as well as the cytoplasmic loop of NS4B are critical for the interaction. Functional analysis delineated residues within the NS4B cytoplasmic loop that are crucial for DENV replication. Our findings reveal molecular details of how flavivirus NS3 protein cooperates with NS4B within the RC. In addition, this study has established the rationale and assays to search for inhibitors disrupting the NS3-NS4B interaction for antiviral drug discovery.


Subject(s)
Dengue Virus/physiology , Protein Interaction Mapping , Viral Nonstructural Proteins/metabolism , Animals , Cell Line , Cricetinae , DNA Mutational Analysis , Immunoprecipitation , Magnetic Resonance Spectroscopy , Protein Binding , Protein Conformation , RNA Helicases/chemistry , RNA Helicases/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Surface Plasmon Resonance , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
9.
J Infect Dis ; 210(10): 1616-26, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-24864124

ABSTRACT

Malaria causes nearly 1 million deaths annually. Recent emergence of multidrug resistance highlights the need to develop novel therapeutic interventions against human malaria. Given the involvement of sugar binding plasmodial proteins in host invasion, we set out to identify such proteins as targets of small glycans. Combining multidisciplinary approaches, we report the discovery of a small molecule inhibitor, NIC, capable of inhibiting host invasion through interacting with a major invasion-related protein, merozoite surface protein-1 (MSP-1). This interaction was validated through computational, biochemical, and biophysical tools. Importantly, treatment with NIC prevented host invasion by Plasmodium falciparum and Plasmodium vivax--major causative organisms of human malaria. MSP-1, an indispensable antigen critical for invasion and suitably localized in abundance on the merozoite surface represents an ideal target for antimalarial development. The ability to target merozoite invasion proteins with specific small inhibitors opens up a new avenue to target this important pathogen.


Subject(s)
Antimalarials/isolation & purification , Antimalarials/pharmacology , Endocytosis/drug effects , Merozoite Surface Protein 1/antagonists & inhibitors , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Humans
10.
Methods Mol Biol ; 1138: 271-84, 2014.
Article in English | MEDLINE | ID: mdl-24696343

ABSTRACT

Surface plasmon resonance (SPR) biosensors have become the mainstream method for biomolecular interaction analysis. It offers many advantages over conventional methods by its label-free, real-time monitoring, low sample consumption, high throughput, and remarkable sensitivity. We have examined dengue virus protein interactions in the context of antibody affinity measurement, protein-protein interaction, and in the screening of small molecule inhibitors as well as the characterization of the interactions between the small molecule binders and the relevant dengue protein. Here we describe the basic methods involved in performing SPR assays as well as in data processing and evaluation using some examples of dengue proteins.


Subject(s)
Biosensing Techniques/methods , Dengue Virus/metabolism , Viral Proteins/metabolism , Buffers , Kinetics , Ligands , Models, Molecular , Protein Binding
11.
Hum Mol Genet ; 23(17): 4569-80, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24722204

ABSTRACT

MicroRNAs (miRNAs) can repress multiple targets, but how a single de-balanced interaction affects others remained unclear. We found that changing a single miRNA-target interaction can simultaneously affect multiple other miRNA-target interactions and modify physiological phenotype. We show that miR-608 targets acetylcholinesterase (AChE) and demonstrate weakened miR-608 interaction with the rs17228616 AChE allele having a single-nucleotide polymorphism (SNP) in the 3'-untranslated region (3'UTR). In cultured cells, this weakened interaction potentiated miR-608-mediated suppression of other targets, including CDC42 and interleukin-6 (IL6). Postmortem human cortices homozygote for the minor rs17228616 allele showed AChE elevation and CDC42/IL6 decreases compared with major allele homozygotes. Additionally, minor allele heterozygote and homozygote subjects showed reduced cortisol and elevated blood pressure, predicting risk of anxiety and hypertension. Parallel suppression of the conserved brain CDC42 activity by intracerebroventricular ML141 injection caused acute anxiety in mice. We demonstrate that SNPs in miRNA-binding regions could cause expanded downstream effects changing important biological pathways.


Subject(s)
Anxiety/genetics , Hypertension/genetics , MicroRNAs/metabolism , Acetylcholinesterase/genetics , Alleles , Animals , Base Sequence , Blood Pressure , Brain/metabolism , Female , Genetic Predisposition to Disease , Healthy Volunteers , Heterozygote , Homozygote , Humans , Hydrocortisone/blood , Hypertension/blood , Hypertension/physiopathology , Interleukin-6/genetics , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Primates/genetics , Species Specificity , cdc42 GTP-Binding Protein/metabolism
12.
PLoS One ; 8(10): e77984, 2013.
Article in English | MEDLINE | ID: mdl-24205053

ABSTRACT

Mechanosensitive channels (MS) are integral membrane proteins and allow bacteria to survive sudden changes in external osmolarity due to transient opening of their pores. The efflux of cytoplasmic osmolytes reduces the membrane tension and prevents membrane rupture. Therefore these channels serve as emergency valves when experiencing significant environmental stress. The preparation of high quality crystals of integral membrane proteins is a major bottleneck for structure determination by X-ray crystallography. Crystallization chaperones based on various protein scaffolds have emerged as promising tool to increase the crystallization probability of a selected target protein. So far archeal mechanosensitive channels of small conductance have resisted crystallization in our hands. To structurally analyse these channels, we selected nanobodies against an archeal MS channel after immunization of a llama with recombinant expressed, detergent solubilized and purified protein. Here we present the characterization of 23 different binders regarding their interaction with the channel protein using analytical gel filtration, western blotting and surface plasmon resonance. Selected nanobodies bound the target with affinities in the pico- to nanomolar range and some binders had a profound effect on the crystallization of the MS channel. Together with previous data we show that nanobodies are a versatile and valuable tool in structural biology by widening the crystallization space for highly challenging proteins, protein complexes and integral membrane proteins.


Subject(s)
Archaeal Proteins/chemistry , Single-Domain Antibodies/chemistry , Animals , Archaeal Proteins/immunology , Archaeal Proteins/metabolism , Camelids, New World , Crystallography, X-Ray , Mechanotransduction, Cellular , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Thermoplasma/chemistry
13.
Nucleic Acids Res ; 41(13): 6664-73, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23658228

ABSTRACT

Triplex is emerging as an important RNA tertiary structure motif, in which consecutive non-canonical base pairs form between a duplex and a third strand. RNA duplex region is also often functionally important site for protein binding. Thus, triplex-forming oligonucleotides (TFOs) may be developed to regulate various biological functions involving RNA, such as viral ribosomal frameshifting and reverse transcription. How chemical modification in TFOs affects RNA triplex stability, however, is not well understood. Here, we incorporated locked nucleic acid, 2-thio U- and 2'-O methyl-modified residues in a series of all pyrimidine RNA TFOs, and we studied the binding to two RNA hairpin structures. The 12-base-triple major-groove pyrimidine-purine-pyrimidine triplex structures form between the duplex regions of RNA/DNA hairpins and the complementary RNA TFOs. Ultraviolet-absorbance-detected thermal melting studies reveal that the locked nucleic acid and 2-thio U modifications in TFOs strongly enhance triplex formation with both parental RNA and DNA duplex regions. In addition, we found that incorporation of 2'-O methyl-modified residues in a TFO destabilizes and stabilizes triplex formation with RNA and DNA duplex regions, respectively. The (de)stabilization of RNA triplex formation may be facilitated through modulation of van der Waals contact, base stacking, hydrogen bonding, backbone pre-organization, geometric compatibility and/or dehydration energy. Better understanding of the molecular determinants of RNA triplex structure stability lays the foundation for designing and discovering novel sequence-specific duplex-binding ligands as diagnostic and therapeutic agents targeting RNA.


Subject(s)
Oligonucleotides/chemistry , RNA, Double-Stranded/chemistry , DNA/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Nucleic Acid Conformation , Sodium Chloride/chemistry , Thionucleotides/chemistry , Uridine/chemistry
14.
PLoS One ; 8(1): e53979, 2013.
Article in English | MEDLINE | ID: mdl-23320111

ABSTRACT

STIM1 is a Ca(2+) sensor within the ER membrane known to activate the plasma membrane store-operated Ca(2+) channel upon depletion of its target ion in the ER lumen. This activation is a crucial step to initiate the Ca(2+) signaling cascades within various cell types. Human STIM1 is a 77.4 kDa protein consisting of various domains that are involved in Ca(2+) sensing, oligomerization, and channel activation and deactivation. In this study, we identify the domains and boundaries in which functional and stable recombinant human STIM1 can be produced in large quantities. To achieve this goal, we cloned nearly 200 constructs that vary in their initial and terminal residues, length and presence of the transmembrane domain, and we conducted expression and purification analyses using these constructs. The results revealed that nearly half of the constructs could be expressed and purified with high quality, out of which 25% contained the integral membrane domain. Further analyses using surface plasmon resonance, nuclear magnetic resonance and a thermostability assay verified the functionality and integrity of these constructs. Thus, we have been able to identify the most stable and well-behaved domains of the hSTIM1 protein, which can be used for future in vitro biochemical and biophysical studies.


Subject(s)
Membrane Proteins/chemistry , Neoplasm Proteins/chemistry , Amino Acid Sequence , Calcium Signaling/genetics , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Osmolar Concentration , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/physiology , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility , Stromal Interaction Molecule 1 , Structure-Activity Relationship
15.
PLoS One ; 7(12): e51397, 2012.
Article in English | MEDLINE | ID: mdl-23251518

ABSTRACT

Class I Major Histocompatibility Complex (MHC) molecules evolved to sample degraded protein fragments from the interior of the cell, and to display them at the surface for immune surveillance by CD8(+) T cells. The ability of these lymphocytes to identify immunogenic peptide-MHC (pMHC) products on, for example, infected hepatocytes, and to subsequently eliminate those cells, is crucial for the control of hepatitis B virus (HBV). Various protein scaffolds have been designed to recapitulate the specific recognition of presented antigens with the aim to be exploited both diagnostically (e.g. to visualize cells exposed to infectious agents or cellular transformation) and therapeutically (e.g. for the delivery of drugs to compromised cells). In line with this, we report the construction of a soluble tetrameric form of an αß T cell receptor (TCR) specific for the HBV epitope Env(183-191) restricted by HLA-A*02:01, and compare its avidity and fine-specificity with a TCR-like monoclonal antibody generated against the same HLA target. A flow cytometry-based assay with streptavidin-coated beads loaded with Env(183-191)/HLA-A*02:01 complexes at high surface density, enabled us to probe the specific interaction of these molecules with their cognate pMHC. We demonstrate that the TCR tetramer has similar avidity for the pMHC as the antibody, but they differ in their fine-specificity, with only the TCR tetramer being capable of binding both natural variants of the Env(183-191) epitope found in HBV genotypes A/C/D (187Arg) and genotype B (187Lys). Collectively, the results highlight the promiscuity of our soluble TCR, which could be an advantageous feature when targeting cells infected with a mutation-prone virus, but that binding of the soluble oligomeric TCR relies considerably on the surface density of the presented antigen.


Subject(s)
Autoantibodies/immunology , HLA Antigens/metabolism , Receptors, Antigen, T-Cell/metabolism , Amino Acid Sequence , Cell Line , Cloning, Molecular , Flow Cytometry , HLA Antigens/immunology , Humans , Limit of Detection , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Sequence Homology, Amino Acid , Surface Plasmon Resonance
16.
J Biol Chem ; 287(48): 40525-34, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23035113

ABSTRACT

BACKGROUND: Dengue virus surface proteins, envelope (E) and pre-membrane (prM), undergo rearrangement during the maturation process at acidic condition. RESULTS: prM-stem region binds tighter to both E protein and lipid membrane when environment becomes acidic. CONCLUSION: At acidic condition, E proteins are attracted to the membrane-associated prM-stem. SIGNIFICANCE: prM-stem region induces virus structural changes during maturation. Newly assembled dengue viruses (DENV) undergo maturation to become infectious particles. The maturation process involves major rearrangement of virus surface premembrane (prM) and envelope (E) proteins. The prM-E complexes on immature viruses are first assembled as trimeric spikes in the neutral pH environment of the endoplasmic reticulum. When the virus is transported to the low pH environment of the exosomes, these spikes rearrange into dimeric structures, which lie parallel to the virus lipid envelope. The proteins involved in driving this process are unknown. Previous cryoelectron microscopy studies of the mature DENV showed that the prM-stem region (residues 111-131) is membrane-associated and may interact with the E proteins. Here we investigated the prM-stem region in modulating the virus maturation process. The binding of the prM-stem region to the E protein was shown to increase significantly at low pH compared with neutral pH in ELISAs and surface plasmon resonance studies. In addition, the affinity of the prM-stem region for the liposome, as measured by fluorescence correlation spectroscopy, was also increased when pH is lowered. These results suggest that the prM-stem region forms a tight association with the virus membrane and attracts the associated E protein in the low pH environment of exosomes. This will lead to the surface protein rearrangement observed during maturation.


Subject(s)
Dengue Virus/physiology , Dengue/virology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virus Assembly , Amino Acid Motifs , Amino Acid Sequence , Animals , Cell Line , Dengue Virus/chemistry , Dengue Virus/genetics , Humans , Molecular Sequence Data , Sequence Alignment , Viral Envelope Proteins/genetics
17.
J Bacteriol ; 194(21): 5922-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22942245

ABSTRACT

Type IV pili (T4P) are polar surface structures that play important roles in bacterial motility, biofilm formation, and pathogenicity. The protein FimX and its orthologs are known to mediate T4P formation in the human pathogen Pseudomonas aeruginosa and some other bacterial species. It was reported recently that FimX(XAC2398) from Xanthomonas axonopodis pv. citri interacts with PilZ(XAC1133) directly through the nonenzymatic EAL domain of FimX(XAC2398). Here we present experimental data to reveal that the strong interaction between FimX(XAC2398) and PilZ(XAC1133) is not conserved in P. aeruginosa and likely other Pseudomonas species. In vitro and in vivo binding experiments showed that the interaction between FimX and PilZ in P. aeruginosa is below the measurable limit. Surface plasmon resonance assays further confirmed that the interaction between the P. aeruginosa proteins is at least more than 3 orders of magnitude weaker than that between the X. axonopodis pv. citri pair. The N-terminal lobe region of FimX(XAC2398) was identified as the binding surface for PilZ(XAC1133) by amide hydrogen-deuterium exchange and site-directed mutagenesis studies. Lack of several key residues in the N-terminal lobe region of the EAL domain of FimX is likely to account for the greatly reduced binding affinity between FimX and PilZ in P. aeruginosa. All together, the results suggest that the interaction between PilZ and FimX in Xanthomonas species is not conserved in P. aeruginosa due to the evolutionary divergence among the FimX orthologs. The precise roles of FimX and PilZ in bacterial motility and T4P biogenesis are likely to vary among bacterial species.


Subject(s)
Bacterial Proteins/metabolism , Fimbriae, Bacterial/metabolism , Protein Interaction Mapping , Pseudomonas aeruginosa/physiology , Xanthomonas axonopodis/physiology , Amino Acid Sequence , Bacterial Proteins/genetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Binding , Protein Conformation , Sequence Alignment , Surface Plasmon Resonance
18.
J Biol Chem ; 287(14): 10714-26, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22334666

ABSTRACT

Integrins are heterodimeric type I membrane cell adhesion molecules that are involved in many biological processes. Integrins are bidirectional signal transducers because their cytoplasmic tails are docking sites for cytoskeletal and signaling molecules. Kindlins are cytoplasmic molecules that mediate inside-out signaling and activation of the integrins. The three kindlin paralogs in humans are kindlin-1, -2, and -3. Each of these contains a 4.1-ezrin-radixin-moesin (FERM) domain and a pleckstrin homology domain. Kindlin-3 is expressed in platelets, hematopoietic cells, and endothelial cells. Here we show that kindlin-3 is involved in integrin αLß2 outside-in signaling. It also promotes micro-clustering of integrin αLß2. We provide evidence that kindlin-3 interacts with the receptor for activated-C kinase 1 (RACK1), a scaffold protein that folds into a seven-blade propeller. This interaction involves the pleckstrin homology domain of kindlin-3 and blades 5-7 of RACK1. Using the SKW3 human T lymphoma cells, we show that integrin αLß2 engagement by its ligand ICAM-1 promotes the association of kindlin-3 with RACK1. We also show that kindlin-3 co-localizes with RACK1 in polarized SKW3 cells and human T lymphoblasts. Our findings suggest that kindlin-3 plays an important role in integrin αLß2 outside-in signaling.


Subject(s)
GTP-Binding Proteins/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Animals , Cell Adhesion , Cell Line, Tumor , Cell Polarity , GTP-Binding Proteins/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/metabolism , Intercellular Adhesion Molecule-1/chemistry , Intercellular Adhesion Molecule-1/metabolism , Neoplasm Proteins/chemistry , Protein Binding , Protein Transport , Receptors for Activated C Kinase , Receptors, Cell Surface/chemistry , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
19.
Chem Commun (Camb) ; 47(29): 8424-6, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21701752

ABSTRACT

The diversification of the BODIPY scaffold has been hindered by its controversial adaptability to solid-phase chemistry. Herein we report the first solid-phase synthesis of a BODIPY library in high purities. We screened the library against a set of proteins, identified an immunoglobulin fluorescent sensor (Ig Orange) and confirmed its binding by SPR experiments.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemical synthesis , Immunoglobulin G/analysis , Spectrometry, Fluorescence/methods , Boron Compounds/chemical synthesis , Electron Spin Resonance Spectroscopy , Fluorescent Dyes/chemistry , Humans , Protein Binding
20.
J Biol Chem ; 286(16): 14362-72, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21349834

ABSTRACT

Flavivirus NS5 protein encodes methyltransferase and RNA-dependent RNA polymerase (RdRp) activities. Structural analysis of flavivirus RdRp domains uncovered two conserved cavities (A and B). Both cavities are located in the thumb subdomains and represent potential targets for development of allosteric inhibitors. In this study, we used dengue virus as a model to analyze the function of the two RdRp cavities. Amino acids from both cavities were subjected to mutagenesis analysis in the context of genome-length RNA and recombinant NS5 protein; residues critical for viral replication were subjected to revertant analysis. For cavity A, we found that only one (Lys-756) of the seven selected amino acids is critical for viral replication. Alanine substitution of Lys-756 did not affect the RdRp activity, suggesting that this residue functions through a nonenzymatic mechanism. For cavity B, all four selected amino acids (Leu-328, Lys-330, Trp-859, and Ile-863) are critical for viral replication. Biochemical and revertant analyses showed that three of the four mutated residues (Leu-328, Trp-859, and Ile-863) function at the step of initiation of RNA synthesis, whereas the fourth residue (Lys-330) functions by interacting with the viral NS3 helicase domain. Collectively, our results have provided direct evidence for the hypothesis that cavity B, but not cavity A, from dengue virus NS5 polymerase could be a target for rational drug design.


Subject(s)
Flavivirus/enzymology , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Animals , Chlorocebus aethiops , Cricetinae , DNA-Directed RNA Polymerases/chemistry , Drug Design , Enzymes/chemistry , Lysine/chemistry , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Protein Interaction Mapping , RNA-Dependent RNA Polymerase/chemistry , Sequence Homology, Amino Acid , Tryptophan/chemistry , Vero Cells , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...