Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuromuscul Dis ; 11(2): 299-314, 2024.
Article in English | MEDLINE | ID: mdl-38189760

ABSTRACT

Insulin-like growth factor-1 (IGF-1) has been considered as a therapeutic agent for muscle wasting conditions including Duchenne muscular dystrophy as it stimulates muscle regeneration, growth and function. Several preclinical and clinical studies have been conducted to show the therapeutic potential of IGF-1, however, delivery issues, short half-life and isoform complexity have impose challenges. Antisense oligonucleotides (AONs) are able to downregulate target proteins by interfering with their transcripts. Here, we investigated the feasibility of enhancing IGF-1 signaling by downregulation of IGF-binding proteins. We observed that out of frame exon skipping of Igfbp1 and Igfbp3 downregulated their protein expression, which increased Akt phosphorylation on the downstream IGF-1 signaling in vitro. 3'RNA sequencing analysis revealed the related transcriptome in C2C12 cells in response to IGFBP3 downregulation. The AONs did however not induce any exon skipping or protein knockdown in mdx mice after 6 weeks of systemic treatment. We conclude that IGFBP downregulation could be a good strategy to increase IGF-1 signaling but alternative tools are needed for efficient delivery and knockdown in vivo.


Subject(s)
Dystrophin , Oligonucleotides, Antisense , Mice , Animals , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Dystrophin/genetics , Mice, Inbred mdx , Insulin-Like Growth Factor I/metabolism , Down-Regulation , Oligonucleotides , Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor Binding Proteins/metabolism
2.
PLoS One ; 15(12): e0244215, 2020.
Article in English | MEDLINE | ID: mdl-33362201

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe, progressive neuromuscular disorder caused by reading frame disrupting mutations in the DMD gene leading to absence of functional dystrophin. Antisense oligonucleotide (AON)-mediated exon skipping is a therapeutic approach aimed at restoring the reading frame at the pre-mRNA level, allowing the production of internally truncated partly functional dystrophin proteins. AONs work in a sequence specific manner, which warrants generating humanized mouse models for preclinical tests. To address this, we previously generated the hDMDdel52/mdx mouse model using transcription activator like effector nuclease (TALEN) technology. This model contains mutated murine and human DMD genes, and therefore lacks mouse and human dystrophin resulting in a dystrophic phenotype. It allows preclinical evaluation of AONs inducing the skipping of human DMD exons 51 and 53 and resulting in restoration of dystrophin synthesis. Here, we have further characterized this model genetically and functionally. We discovered that the hDMD and hDMDdel52 transgene is present twice per locus, in a tail-to-tail-orientation. Long-read sequencing revealed a partial deletion of exon 52 (first 25 bp), and a 2.3 kb inversion in intron 51 in both copies. These new findings on the genomic make-up of the hDMD and hDMDdel52 transgene do not affect exon 51 and/or 53 skipping, but do underline the need for extensive genetic analysis of mice generated with genome editing techniques to elucidate additional genetic changes that might have occurred. The hDMDdel52/mdx mice were also evaluated functionally using kinematic gait analysis. This revealed a clear and highly significant difference in overall gait between hDMDdel52/mdx mice and C57BL6/J controls. The motor deficit detected in the model confirms its suitability for preclinical testing of exon skipping AONs for human DMD at both the functional and molecular level.


Subject(s)
Disease Models, Animal , Dystrophin/genetics , Gene Deletion , Muscular Dystrophy, Duchenne/genetics , Phenotype , Transgenes , Animals , Biomechanical Phenomena , Dystrophin/metabolism , Exons , Gait , Humans , Male , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/pathology
3.
Bull Environ Contam Toxicol ; 101(3): 410-416, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29752518

ABSTRACT

Aromatic ring hydroxylating dioxygenases (ARHDs), harboured by a variety of bacteria, catalyze the initial reaction in the degradation of a wide range of toxic environmental contaminants like aromatic and polycyclic aromatic hydrocarbons (PAHs). Regardless of the source, bacteria harbouring RHDs play major role in the removal of these toxic contaminants. The diversity of ARHDs in contaminated sites is supposed to be huge. However, most of the ARHD diversity studies are based on the PAH degraders and the ARHD diversity in the monoaromatic hydrocarbon degraders has not fully explored yet. In this study, therefore, the ARHD gene from nine different genara of the monoaromatic hydrocarbon degraders including Raoultella, Stenotrophomons, Staphylococcus, Acinetobacter, Pseudomonas, Serratia, Comamonas, Pantoea, and Micrococcus was analysed through polymerase chain reactions and sequencing. The sequence alignments of the ARHD amplicons with 81%-99% homologies were found to be highly related and held by divergent evolution from a common ancestor.


Subject(s)
Bacteria/metabolism , Dioxygenases/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Biodegradation, Environmental , Environmental Pollution , Polymerase Chain Reaction , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...