Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 35(19)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38271721

ABSTRACT

Formation of functional thin films for nanoelectronics and magnetic data storage via thermally induced diffusion-driven structural phase transformations in multilayer stacks is a promising technology-relevant approach. Ferromagnetic thin films based on Co Pt alloys are considered as a material science platform for the development of various applications such as spin valves, spin orbit torque devices, and high-density data storage media. Here, we study diffusion processes in Pt-Co-based stacks with the focus on the effect of layers inversion (Pt/Co/substrate versus Co/Pt/substrate) and insertion of an intermediate Au layer on the structural transitions and magnetic properties. We demonstrate that the layer stacking has a pronounced effect on the diffusion rate at temperatures, where the diffusion is dominated by grain boundaries. We quantify effective diffusion coefficients, which characterize the diffusion rate of Co and Pt through the interface and grain boundaries, providing the possibility to control the homogenization rate of the Pt-Co-based heterostructures. The obtained values are in the range of 10-16-10-13cm2s-1for temperatures of 150 °C-350 °C. Heat treatment of the thin-film samples results in the coercivity enhancement, which is attributed to short-range chemical ordering effects. We show that introducing an additional Au intermediate layer leads to an increase of the coercive field of the annealed samples due to a modification of exchange coupling between the magnetic grains at the grain boundaries.

2.
Materials (Basel) ; 14(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832376

ABSTRACT

The paper presents a method for obtaining electrochemically active ultrafine composites of iron oxides, superparamagnetic 'core/shell' γ-Fe2O3/defective α-Fe2O3, which involved modifying sol-gel citrate synthesis, hydrothermal treatment of the formed sol, and subsequent annealing of materials in the air. The synthesized materials' phase composition, magnetic microstructure, and structural, morphological characteristics have been determined via X-ray analysis, Mossbauer spectroscopy, scanning electron microscopy (SEM), and adsorption porometry. The mechanisms of phase stability were analyzed, and the model was suggested as FeOOH → γ-Fe2O3 → α-Fe2O3. It was found that the presence of chelating agents in hydrothermal synthesis encapsulated the nucleus of the new phase in the reactor and interfered with the direct processes of recrystallization of the structure with the subsequent formation of the α-Fe2O3 crystalline phase. Additionally, the conductive properties of the synthesized materials were determined by impedance spectroscopy. The electrochemical activity of the synthesized materials was evaluated by the method of cyclic voltammetry using a three-electrode cell in a 3.5 M aqueous solution of KOH. For the ultrafine superparamagnetic 'core/shell' γ-Fe2O3/defective α-Fe2O composite with defective hematite structure and the presence of ultra-dispersed maghemite with particles in the superparamagnetic state was fixed increased electrochemical activity, and specific discharge capacity of the material is 177 F/g with a Coulomb efficiency of 85%. The prototypes of hybrid supercapacitor with work electrodes based on ultrafine composites superparamagnetic 'core/shell' γ-Fe2O3/defective α-Fe2O3 have a specific discharge capacity of 124 F/g with a Coulomb efficiency of 93% for current 10 mA.

SELECTION OF CITATIONS
SEARCH DETAIL
...