Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 17328, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31757998

ABSTRACT

The evolutionary relationships between extinct and extant lineages provide important insight into species' response to environmental change. The grey wolf is among the few Holarctic large carnivores that survived the Late Pleistocene megafaunal extinctions, responding to that period's profound environmental changes with loss of distinct lineages and phylogeographic shifts, and undergoing domestication. We reconstructed global genome-wide phylogeographic patterns in modern wolves, including previously underrepresented Siberian wolves, and assessed their evolutionary relationships with a previously genotyped wolf from Taimyr, Siberia, dated at 35 Kya. The inferred phylogeographic structure was affected by admixture with dogs, coyotes and golden jackals, stressing the importance of accounting for this process in phylogeographic studies. The Taimyr lineage was distinct from modern Siberian wolves and constituted a sister lineage of modern Eurasian wolves and domestic dogs, with an ambiguous position relative to North American wolves. We detected gene flow from the Taimyr lineage to Arctic dog breeds, but population clustering methods indicated closer similarity of the Taimyr wolf to modern wolves than dogs, implying complex post-divergence relationships among these lineages. Our study shows that introgression from ecologically diverse con-specific and con-generic populations was common in wolves' evolutionary history, and could have facilitated their adaptation to environmental change.


Subject(s)
Whole Genome Sequencing/veterinary , Wolves/classification , Wolves/genetics , Animals , Arctic Regions , Databases, Genetic , Evolution, Molecular , Gene Flow , Linkage Disequilibrium , Phylogeny , Phylogeography , Siberia
2.
Evol Dev ; 21(4): 175-187, 2019 07.
Article in English | MEDLINE | ID: mdl-30887666

ABSTRACT

Parthenogenetic species are usually considered to be short-lived due to the accumulation of adverse mutations, lack of genetic variability, and inability to adapt to changing environment. If so, one may expect that the phenotype of clonal organisms may reflect such genetic and/or environmental stress. To test this hypothesis, we compared the developmental stability of bisexual and parthenogenetic lizards of the genus Darevskia. We assessed asymmetries in three meristic traits: ventral, preanal, and supratemporal scales. Our results suggest that the amount of ventral and preanal asymmetries is significantly higher in clones compared with their maternal, but not paternal, progenitor species. However, it is questionable, whether this is a consequence of clonality, as it may be considered a mild form of outbreeding depression as well. Moreover, most ventral asymmetries were found in the bisexual species Darevskia valentini. We suggest that greater differences in asymmetry levels among bisexuals may be, for instance, a consequence of the population size: the smaller the population, the higher the inbreeding and the developmental instability. On the basis of the traits examined in this study, the parthenogens do not seem to be of significantly poorer quality.


Subject(s)
Lizards/growth & development , Lizards/genetics , Animal Scales , Animals , Body Patterning , Female , Male , Parthenogenesis , Sex Characteristics , Species Specificity
3.
PLoS One ; 10(11): e0141236, 2015.
Article in English | MEDLINE | ID: mdl-26540195

ABSTRACT

In the first continent-wide study of the golden jackal (Canis aureus), we characterised its population genetic structure and attempted to identify the origin of European populations. This provided a unique insight into genetic characteristics of a native carnivore population with rapid large-scale expansion. We analysed 15 microsatellite markers and a 406 base-pair fragment of the mitochondrial control region. Bayesian-based and principal components methods were applied to evaluate whether the geographical grouping of samples corresponded with genetic groups. Our analysis revealed low levels of genetic diversity, reflecting the unique history of the golden jackal among Europe's native carnivores. The results suggest ongoing gene flow between south-eastern Europe and the Caucasus, with both contributing to the Baltic population, which appeared only recently. The population from the Peloponnese Peninsula in southern Greece forms a common genetic cluster with samples from south-eastern Europe (ΔK approach in STRUCTURE, Principal Components Analysis [PCA]), although the results based on BAPS and the estimated likelihood in STRUCTURE indicate that Peloponnesian jackals may represent a distinct population. Moreover, analyses of population structure also suggest either genetic distinctiveness of the island population from Samos near the coast of Asia Minor (BAPS, most STRUCTURE, PCA), or possibly its connection with the Caucasus population (one analysis in STRUCTURE). We speculate from our results that ancient Mediterranean jackal populations have persisted to the present day, and have merged with jackals colonising from Asia. These data also suggest that new populations of the golden jackal may be founded by long-distance dispersal, and thus should not be treated as an invasive alien species, i.e. an organism that is "non-native to an ecosystem, and which may cause economic or environmental harm or adversely affect human health". These insights into the genetic structure and ancestry of Baltic jackals have important implications for management and conservation of jackals in Europe. The golden jackal is listed as an Annex V species in the EU Habitats Directive and as such, considering also the results presented here, should be legally protected in all EU member states.


Subject(s)
Jackals/genetics , Animals , Asia , DNA, Mitochondrial/genetics , Demography , Europe , Female , Genetic Variation/genetics , Haplotypes/genetics , Male , Microsatellite Repeats/genetics , Molecular Biology , Population Growth
4.
PLoS One ; 9(4): e93828, 2014.
Article in English | MEDLINE | ID: mdl-24714198

ABSTRACT

Despite continuous historical distribution of the grey wolf (Canis lupus) throughout Eurasia, the species displays considerable morphological differentiation that resulted in delimitation of a number of subspecies. However, these morphological discontinuities are not always consistent with patterns of genetic differentiation. Here we assess genetic distinctiveness of grey wolves from the Caucasus (a region at the border between Europe and West Asia) that have been classified as a distinct subspecies C. l. cubanensis. We analysed their genetic variability based on mtDNA control region, microsatellite loci and genome-wide SNP genotypes (obtained for a subset of the samples), and found similar or higher levels of genetic diversity at all these types of loci as compared with other Eurasian populations. Although we found no evidence for a recent genetic bottleneck, genome-wide linkage disequilibrium patterns suggest a long-term demographic decline in the Caucasian population--a trend consistent with other Eurasian populations. Caucasian wolves share mtDNA haplotypes with both Eastern European and West Asian wolves, suggesting past or ongoing gene flow. Microsatellite data also suggest gene flow between the Caucasus and Eastern Europe. We found evidence for moderate admixture between the Caucasian wolves and domestic dogs, at a level comparable with other Eurasian populations. Taken together, our results show that Caucasian wolves are not genetically isolated from other Eurasian populations, share with them the same demographic trends, and are affected by similar conservation problems.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Wolves/genetics , Animals , Europe , Europe, Eastern , Gene Flow , Genetic Loci , Genetics, Population , Haplotypes , Microsatellite Repeats , Middle East
SELECTION OF CITATIONS
SEARCH DETAIL
...