Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Turk J Emerg Med ; 24(1): 55-57, 2024.
Article in English | MEDLINE | ID: mdl-38343518

ABSTRACT

In the emergency department, there are many symptoms patients present. One of the major symptoms is fever which could be the only symptom, as our patient had. Not only do infections, drugs, trauma, etc., cause fever, but also undetermined cancer types do. In this case, we are presenting a 28-year-old male coming with a 3-week duration of fever and being admitted with the diagnosis of pulmonary artery intimal sarcoma as generally misconceived with pulmonary thromboembolism, to raise awareness of this fatal cancer.

2.
Mol Metab ; 82: 101904, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38395148

ABSTRACT

OBJECTIVE: The prevalence of obesity has increased over the past three decades. Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) play a vital role in induction of satiety. Chronic consumption of high-fat diet is known to reduce hypothalamic neuronal sensitivity to hormones like leptin, thus contributing to the development and persistence of obesity. The functional and morphological effects of a high-calorie diet on POMC neurons and how these effects contribute to the development and maintenance of the obese phenotype are not fully understood. For this purpose, POMC-Cre transgenic mice model was exposed to high-fat diet (HFD) and at the end of a 3- and 6-month period, electrophysiological and morphological changes, and the role of POMC neurons in homeostatic nutrition and their response to leptin were thoroughly investigated. METHODS: Effects of HFD on POMC-satiety neurons in transgenic mice models exposed to chronic high-fat diet were investigated using electrophysiological (patch-clamp), chemogenetic and Cre recombinase advanced technological methods. Leptin, glucose and lipid profiles were determined and analyzed. RESULTS: In mice exposed to a high-fat diet for 6 months, no significant changes in POMC dendritic spine number or projection density from POMC neurons to the paraventricular hypothalamus (PVN), lateral hypothalamus (LH), and bed nucleus stria terminalis (BNST) were observed. It was revealed that leptin hormone did not change the electrophysiological activities of POMC neurons in mice fed with HFD for 6 months. In addition, chemogenetic stimulation of POMC neurons increased HFD consumption. In the 3-month HFD-fed group, POMC activation induced an orexigenic response in mice, whereas switching to a standard diet was found to abolish orexigenic behavior in POMC mice. CONCLUSIONS: Chronic high fat consumption disrupts the regulation of POMC neuron activation by leptin. Altered POMC neuron activation abolished the neuron's characteristic behavioral anorexigenic response. Change in nutritional content contributes to the reorganization of developing maladaptations.


Subject(s)
Diet, High-Fat , Leptin , Mice , Animals , Diet, High-Fat/adverse effects , Leptin/metabolism , Pro-Opiomelanocortin/metabolism , Hypothalamus/metabolism , Obesity , Neurons/metabolism , Mice, Transgenic
3.
Neuroendocrinology ; 114(5): 439-452, 2024.
Article in English | MEDLINE | ID: mdl-38271999

ABSTRACT

INTRODUCTION: Postweaning social isolation (PWSI) in rodents is an advanced psychosocial stress model in early life. Some psychosocial stress, such as restrain and isolation, disrupts reproductive physiology in young and adult periods. Mechanisms of early-life stress effects on central regulation of reproduction need to be elucidated. We have investigated the effects of PWSI on function of arcuate kisspeptin (ARCKISS1) neurons by using electrophysiological techniques combining with monitoring of puberty onset and estrous cycle in male and female Kiss1-Cre mice. METHODS: Female mice were monitored for puberty onset with vaginal opening examination during social isolation. After isolation, the estrous cycle of female mice was monitored with vaginal cytology. Anxiety-like behavior of mice was determined by an elevated plus maze test. Effects of PWSI on electrophysiology of ARCKISS1 neurons were investigated by the patch clamp method after intracranial injection of AAV-GFP virus into arcuate nucleus of Kiss1-Cre mice after the isolation period. RESULTS: We found that both male and female isolated mice showed anxiety-like behavior. PWSI caused delay in vaginal opening and extension in estrous cycle length. Spontaneous-firing rates of ARCKISS1 neurons were significantly lower in the isolated male and female mice. The peak amplitude of inhibitory postsynaptic currents to ARCKISS1 neurons was higher in the isolated mice, while frequency of excitatory postsynaptic currents was higher in group-housed mice. CONCLUSION: These findings demonstrate that PWSI alters pre- and postpubertal reproductive physiology through metabolic and electrophysiological pathways.


Subject(s)
Arcuate Nucleus of Hypothalamus , Estrous Cycle , Kisspeptins , Neurons , Sexual Maturation , Social Isolation , Animals , Kisspeptins/metabolism , Female , Arcuate Nucleus of Hypothalamus/metabolism , Neurons/physiology , Neurons/metabolism , Male , Sexual Maturation/physiology , Mice , Estrous Cycle/physiology , Mice, Transgenic , Anxiety/physiopathology , Stress, Psychological/physiopathology
4.
Cell Rep ; 43(1): 113630, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38165803

ABSTRACT

Opioids are generally known to promote hedonic food consumption. Although much of the existing evidence is primarily based on studies of the mesolimbic pathway, endogenous opioids and their receptors are widely expressed in hypothalamic appetite circuits as well; however, their role in homeostatic feeding remains unclear. Using a fluorescent opioid sensor, deltaLight, here we report that mediobasal hypothalamic opioid levels increase by feeding, which directly and indirectly inhibits agouti-related protein (AgRP)-expressing neurons through the µ-opioid receptor (MOR). AgRP-specific MOR expression increases by energy surfeit and contributes to opioid-induced suppression of appetite. Conversely, its antagonists diminish suppression of AgRP neuron activity by food and satiety hormones. Mice with AgRP neuron-specific ablation of MOR expression have increased fat preference without increased motivation. These results suggest that post-ingestion release of endogenous opioids contributes to AgRP neuron inhibition to shape food choice through MOR signaling.


Subject(s)
Analgesics, Opioid , Neurons , Animals , Mice , Agouti-Related Protein/metabolism , Analgesics, Opioid/pharmacology , Eating , Hypothalamus/metabolism , Neurons/metabolism , Signal Transduction
5.
Nat Neurosci ; 27(1): 102-115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37957320

ABSTRACT

Food intake follows a predictable daily pattern and synchronizes metabolic rhythms. Neurons expressing agouti-related protein (AgRP) read out physiological energetic state and elicit feeding, but the regulation of these neurons across daily timescales is poorly understood. Using a combination of neuron dynamics measurements and timed optogenetic activation in mice, we show that daily AgRP-neuron activity was not fully consistent with existing models of homeostatic regulation. Instead of operating as a 'deprivation counter', AgRP-neuron activity primarily followed the circadian rest-activity cycle through a process that required an intact suprachiasmatic nucleus and synchronization by light. Imposing novel feeding patterns through time-restricted food access or periodic AgRP-neuron stimulation was sufficient to resynchronize the daily AgRP-neuron activity rhythm and drive anticipatory-like behavior through a process that required DMHPDYN neurons. These results indicate that AgRP neurons integrate time-of-day information of past feeding experience with current metabolic needs to predict circadian feeding time.


Subject(s)
Neurons , Suprachiasmatic Nucleus , Animals , Mice , Agouti-Related Protein , Feeding Behavior/physiology , Neurons/physiology
6.
Nat Commun ; 14(1): 6602, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857606

ABSTRACT

Norepinephrine (NE) is a well-known appetite regulator, and the nor/adrenergic system is targeted by several anti-obesity drugs. To better understand the circuitry underlying adrenergic appetite control, here we investigated the paraventricular hypothalamic nucleus (PVN), a key brain region that integrates energy signals and receives dense nor/adrenergic input, using a mouse model. We found that PVN NE level increases with signals of energy deficit and decreases with food access. This pattern is recapitulated by the innervating catecholaminergic axon terminals originating from NTSTH-neurons. Optogenetic activation of rostral-NTSTH → PVN projection elicited strong motivation to eat comparable to overnight fasting whereas its inhibition attenuated both fasting-induced & hypoglycemic feeding. We found that NTSTH-axons functionally targeted PVNMC4R-neurons by predominantly inhibiting them, in part, through α1-AR mediated potentiation of GABA release from ARCAgRP presynaptic terminals. Furthermore, glucoprivation suppressed PVNMC4R activity, which was required for hypoglycemic feeding response. These results define an ascending nor/adrenergic circuit, NTSTH → PVNMC4R, that conveys peripheral hunger signals to melanocortin pathway.


Subject(s)
Hunger , Melanocortins , Melanocortins/metabolism , Adrenergic Agents/metabolism , Appetite , Paraventricular Hypothalamic Nucleus/metabolism , Norepinephrine/metabolism , Hypoglycemic Agents/metabolism
7.
Cell Rep ; 42(8): 112935, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37540598

ABSTRACT

Resting metabolic rate (RMR) adaptation occurs during obesity and is hypothesized to contribute to failed weight management. Angiotensin II (Ang-II) type 1 (AT1A) receptors in Agouti-related peptide (AgRP) neurons contribute to the integrative control of RMR, and deletion of AT1A from AgRP neurons causes RMR adaptation. Extracellular patch-clamp recordings identify distinct cellular responses of individual AgRP neurons from lean mice to Ang-II: no response, inhibition via AT1A and Gαi, or stimulation via Ang-II type 2 (AT2) receptors and Gαq. Following diet-induced obesity, a subset of Ang-II/AT1A-inhibited AgRP neurons undergo a spontaneous G-protein "signal switch," whereby AT1A stop inhibiting the cell via Gαi and instead begin stimulating the cell via Gαq. DREADD-mediated activation of Gαi, but not Gαq, in AT1A-expressing AgRP cells stimulates RMR in lean and obese mice. Thus, loss of AT1A-Gαi coupling within the AT1A-expressing AgRP neuron subtype represents a molecular mechanism contributing to RMR adaptation.


Subject(s)
Neurons , Obesity , Receptor, Angiotensin, Type 1 , Animals , Mice , Agouti-Related Protein/metabolism , Angiotensin II/metabolism , Neurons/metabolism , Obesity/metabolism , Receptor, Angiotensin, Type 1/metabolism
8.
Environ Pollut ; 324: 121366, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36858099

ABSTRACT

There is increasing concern about the effects of endocrine disrupting chemicals (EDCs) on human health. Recently, some EDCs are suggested to affect energy metabolism leading to increased risk of obesity. Obesogenic effects of some EDCs on adipogenesis have been reported, however, there is no study examining their potential actions on the brain circuits controlling feeding and metabolism. We have investigated effects of tributyltin (TBT) and dichlorodiphenyltrichloroethane (p,p'-DDT) on electrical activity on dorsomedial hypothalamic leptin receptor neurons (DMHLepR), morphological adaptations in neuronal anatomy of DMHLepR, locomotion, and anxiety-like behaviors in mice. Twenty-three Lep-Cre transgenic mice were intracranially injected with GFP virus. Control animals received intraperitoneal corn oil alone while group 2 and 3 received TBT (25 µg/kg) and p,p'-DDT (2 mg/kg) for one month. Locomotor activity and anxiety-like behavior of the animals were determined by open field test. Electrophysiological effects of TBT and p,p'-DDT on DMHLepR neurons were determined by patch clamp method. Neuronal anatomy was determined by confocal microscopy. Spontaneous firing frequency of DMHLepR neurons of TBT group of mice was significantly higher than both p,p'-DDT and control groups (p < 0.01). TBT and p,p'-DDT significantly decreased frequency of the spontaneous inhibitory post-synaptic currents to DMHLepR neurons compared to the control group (p < 0.05). The time spent in the center and the number of entrances to the center by the TBT-administered mice were significantly lower than other groups (p < 0.01). The total distance traveled and mean speed of the control group of mice were significantly higher than the p,p'-DDT- and TBT-administered animals (p < 0.0001). c-Fos activity of the p,p'-DDT- and TBT-administered animals were significantly elevated compared to the control group (p < 0.001), while no change in the number of dendritic spines were observed. In conclusion, this study demonstrates that exposure to TBT and p,p'-DDT alters electrical activity in DMHLepR neurons and behavioral state in mice.


Subject(s)
Endocrine Disruptors , Mice , Animals , Male , Humans , Endocrine Disruptors/metabolism , Receptors, Leptin/metabolism , DDT/metabolism , Hypothalamus , Neurons , Anxiety/chemically induced
9.
Mol Metab ; 69: 101676, 2023 03.
Article in English | MEDLINE | ID: mdl-36682413

ABSTRACT

OBJECTIVE: Serotonin (5HT) is a well-known anorexigenic molecule, and 5HT neurons of dorsal raphe nucleus (DRN) have been implicated in suppression of feeding; however, the downstream circuitry is poorly understood. Here we explored major projections of DRN5HT neurons for their capacity to modulate feeding. METHODS: We used optogenetics to selectively activate DRN5HT axonal projections in hypothalamic and extrahypothalamic areas and monitored food intake. We next used fiber photometry to image the activity dynamics of DRN5HT axons and 5HT levels in projection areas in response feeding and metabolic hormones. Finally, we used electrophysiology to determine how DRN5HT axons affect downstream neuron activity. RESULTS: We found that selective activation of DRN5HT axons in (DRN5HT → LH) and (DRN5HT → BNST) suppresses feeding whereas activating medial hypothalamic projections has no effect. Using in vivo imaging, we found that food access and satiety hormones activate DRN5HT projections to LH where they also rapidly increase extracellular 5HT levels. Optogenetic mapping revealed that DRN5HT → LHvGAT and DRN5HT → LHvGlut2 connections are primarily inhibitory and excitatory respectively. Further, in addition to its direct action on LH neurons, we found that 5HT suppresses GABA release from presynaptic terminals arriving from AgRP neurons. CONCLUSIONS: These findings define functionally redundant forebrain circuits through which DRN5HT neurons suppress feeding and reveal that these projections can be modulated by metabolic hormones.


Subject(s)
Dorsal Raphe Nucleus , Serotonergic Neurons , Dorsal Raphe Nucleus/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Hypothalamus/metabolism , Hormones
10.
Mol Cell Biochem ; 478(8): 1813-1824, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36574097

ABSTRACT

Gold nanoparticles (GNPs) have been widely used in medicine such as imaging, drug delivery and therapeutics due to their multifunctional properties. Alterations in neuronal function may contribute to various neurological diseases. Transferrin plays a primary role in iron transportation and delivery and has recently been utilized for drug delivery to the brain. We have investigated effects of transferrin-conjugated GNPs (Tf-GNPs) on anxiety and locomotor behavior in vivo and also hippocampal neuronal activity ex vivo. Electrophysiological effects of Tf-GNP on hippocampal neurons were determined by patch clamp method. Fifteen male young adult C57BL/6 mice were randomly divided into three groups as control (200 µL PBS), GNP (bare GNP; 2.2 µg/g in PBS) and Tf-GNPs (2.2 µg/g Tf-GNP). Animals intraperitoneally received the respective treatments for seven consecutive days and were subjected to elevated plus maze (EPM) and open field tests (OFT). Ex vivo, firing frequency of the neurons significantly increased by GNP treatment (p < 0.001). In vivo, animals in Tf-GNP group showed significantly longer distance in open arms but significantly lower number of entries to the open arms in EPM (p < 0.05). Mice received bare GNPs had significantly higher locomotor activity in OFT (p < 0.05), while Tf-GNP did not alter the locomotor activity significantly (p = 0.051). Animals in Tf-GNP group spent significantly longer time in the peripheral zone in OFT (p < 0.05). The present findings have shown that Tf-GNP induces anxiety-like behavior without altering spontaneous firing rate of hippocampal neurons. We suggest that neurobiological effects of Tf-GNP should be pre-determined before using in medical applications.


Subject(s)
Gold , Metal Nanoparticles , Mice , Male , Animals , Gold/pharmacology , Transferrin , Mice, Inbred C57BL , Anxiety/drug therapy
11.
Cell Metab ; 34(2): 317-328.e6, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108517

ABSTRACT

Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.


Subject(s)
Fibroblast Growth Factors , Genome-Wide Association Study , Alcohol Drinking , Animals , Endocrine System/metabolism , Fibroblast Growth Factors/metabolism
12.
Cell Metab ; 32(2): 273-286.e6, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32640184

ABSTRACT

Fibroblast growth factor 21 (FGF21) is an endocrine hormone produced by the liver that regulates nutrient and metabolic homeostasis. FGF21 production is increased in response to macronutrient imbalance and signals to the brain to suppress sugar intake and sweet-taste preference. However, the central targets mediating these effects have been unclear. Here, we identify FGF21 target cells in the hypothalamus and reveal that FGF21 signaling to glutamatergic neurons is both necessary and sufficient to mediate FGF21-induced sugar suppression and sweet-taste preference. Moreover, we show that FGF21 acts directly in the ventromedial hypothalamus (VMH) to specifically regulate sucrose intake, but not non-nutritive sweet-taste preference, body weight, or energy expenditure. Finally, our data demonstrate that FGF21 affects neuronal activity by increasing activation and excitability of neurons in the VMH. Thus, FGF21 signaling to glutamatergic neurons in the VMH is an important component of the neurocircuitry that functions to regulate sucrose intake.


Subject(s)
Carbohydrates/administration & dosage , Fibroblast Growth Factors/metabolism , Neurons/metabolism , Animals , Energy Intake , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction
13.
Heliyon ; 6(12): e05824, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33426332

ABSTRACT

Gold nanoparticles (AuNPs) can cross the blood brain barrier, thus can be used as nanocarriers in brain drug delivery. However, the effect of bare and polyethylene glycol-modified (PEGylated) AuNPs on normal neural function has not been extensively investigated. In this study, bioelectrical properties of neuronal functions of male BALB/c mice were explored ex vivo and in vivo by using 5 nm bare AuNPs and PEGylated AuNPs. Electrophysiological properties of neurons from hippocampal CA1 region sections were recorded by patch clamp method. Ex vivo, firing rate of action and membrane potentials in response to negative current stimuli significantly altered only after bare AuNP exposure compared to control (p < 0.05). After in vivo injections, anxiety levels of animals were similar. Amplitude of action potentials reduced only in bare AuNP group (p < 0.05). In conclusion, excitability of hippocampal neurons is increasing with bare AuNP exposure, and PEGylation might be more biocompatible for medical applications.

14.
Neuroendocrinology ; 110(3-4): 258-270, 2020.
Article in English | MEDLINE | ID: mdl-31154452

ABSTRACT

BACKGROUND: Melanin-concentrating hormone (MCH)-expressing neurons have been implicated in regulation of energy homeostasis and reward, yet the role of their electrical activity in short-term appetite and reward modulation has not been fully understood. OBJECTIVES: We investigated short-term behavioral and physiological effects of MCH neuron activity manipulations. METHODS: We used optogenetic and chemogenetic approaches in Pmch-cre transgenic mice to acutely stimulate/inhibit MCH neuronal activity while probing feeding, locomotor activity, anxiety-like behaviors, glucose homeostasis, and reward. RESULTS: MCH neuron activity is neither required nor sufficient for short-term appetite unless stimulation is temporally paired with consumption. MCH neuronal activation does not affect short-term locomotor activity, but inhibition improves glucose tolerance and is mildly anxiolytic. Finally, using two different operant tasks, we showed that activation of MCH neurons alone is sufficient to induce reward. CONCLUSIONS: Our results confirm diverse behavioral/physiological functions of MCH neurons and suggest a direct role in reward function.


Subject(s)
Appetite/physiology , Behavior, Animal/physiology , Blood Glucose/metabolism , Feeding Behavior/physiology , Hypothalamic Hormones/metabolism , Locomotion/physiology , Melanins/metabolism , Neurons/physiology , Pituitary Hormones/metabolism , Reward , Animals , Female , Homeostasis/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Optogenetics
15.
Cell Metab ; 31(2): 313-326.e5, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31839488

ABSTRACT

Glucose is the essential energy source for the brain, whose deficit, triggered by energy deprivation or therapeutic agents, can be fatal. Increased appetite is the key behavioral defense against hypoglycemia; however, the central pathways involved are not well understood. Here, we describe a glucoprivic feeding pathway by tyrosine hydroxylase (TH)-expressing neurons from nucleus of solitary tract (NTS), which project densely to the hypothalamus and elicit feeding through bidirectional adrenergic modulation of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons. Acute chemogenetic inhibition of arcuate nucleus (ARC)-projecting NTSTH neurons or their target, AgRP neurons, impaired glucoprivic feeding induced by 2-Deoxy-D-glucose (2DG) injection. Neuroanatomical tracing results suggested that ARC-projecting orexigenic NTSTH neurons are largely distinct from neighboring catecholamine neurons projecting to parabrachial nucleus (PBN) that promotes satiety. Collectively, we describe a circuit organization in which an ascending pathway from brainstem stimulates appetite through key hunger neurons in the hypothalamus in response to hypoglycemia.


Subject(s)
Agouti-Related Protein/metabolism , Appetite Regulation , Hypoglycemia/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Solitary Nucleus/metabolism , Animals , Female , Hypothalamus/cytology , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Solitary Nucleus/cytology
16.
Neurobiol Dis ; 121: 58-64, 2019 01.
Article in English | MEDLINE | ID: mdl-30240706

ABSTRACT

Prader-Willi and the related Schaaf-Yang Syndromes (PWS/SYS) are rare neurodevelopmental disorders characterized by overlapping phenotypes of high incidence of autism spectrum disorders (ASD) and neonatal feeding difficulties. Based on clinical and basic studies, oxytocin pathway defects are suggested to contribute disease pathogenesis but the mechanism has been poorly understood. Specifically, whether the impairment in oxytocin system is limited to neuropeptide levels and how the functional properties of broader oxytocin neuron circuits affected in PWS/SYS have not been addressed. Using cell type specific electrophysiology, we investigated basic synaptic and cell autonomous properties of oxytocin neurons in the absence of MAGEL2; a hypothalamus enriched ubiquitin ligase regulator that is inactivated in both syndromes. We observed significant suppression of overall ex vivo oxytocin neuron activity, which was largely contributed by altered synaptic input profile; with reduced excitatory and increased inhibitory currents. Our results suggest that dysregulation of oxytocin system goes beyond altered neuropeptide expression and synaptic excitation inhibition imbalance impairs overall oxytocin pathway function.


Subject(s)
Antigens, Neoplasm/physiology , Hypothalamus/physiology , Membrane Potentials , Neurons/physiology , Oxytocin/physiology , Proteins/physiology , Action Potentials , Animals , Antigens, Neoplasm/genetics , Excitatory Postsynaptic Potentials , Female , Inhibitory Postsynaptic Potentials , Male , Mice, Inbred C57BL , Mice, Transgenic , Proteins/genetics , Receptors, AMPA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...