Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Joint J ; 106-B(7): 751-758, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38945540

ABSTRACT

Aims: Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children. Methods: In this retrospective cohort study, ultrasound and radiograph examinations were performed every two weeks in 30 paediatric patients undergoing limb lengthening. Ultrasound was used to monitor new bone formation. The number of vertical vessels and the blood flow resistance index were compared with those from plain radiographs. Results: We categorized the new bone formation into three stages: stage I (early lengthening), in which there was no obvious callus formation on radiographs and ultrasound; stage II (lengthening), in which radiographs showed low-density callus formation with uneven distribution and three sub-stages could be identified on ultrasound: in Ia punctate callus was visible; in IIb there was linear callus formation which was not yet connected and in IIc there was continuous linear callus. In stage III (healing), the bone ends had united, the periosteum was intact, and the callus had disappeared, as confirmed on radiographs, indicating healed bone. A progressive increase in the number of vertical vessels was noted in the early stages, peaking during stages IIb and IIc, followed by a gradual decline (p < 0.001). Delayed healing involved patients with a prolonged stage IIa or those who regressed to stage IIa from stages IIb or IIc during lengthening. Conclusion: We found that the formation of new bone in paediatric patients undergoing limb lengthening could be reliably evaluated using ultrasound when combined with the radiological findings. This combination enabled an improved assessment of the prognosis, and adjustments to the lengthening protocol. While SMI offered additional insights into angiogenesis within the new bone, its role primarily contributed to the understanding of the microvascular environment rather than directly informing adjustments of treatment.


Subject(s)
Ultrasonography , Humans , Child , Retrospective Studies , Male , Female , Child, Preschool , Adolescent , Ultrasonography/methods , Osteogenesis/physiology , Bone Lengthening/methods , Bony Callus/diagnostic imaging , Bony Callus/blood supply , Leg Length Inequality/diagnostic imaging , Leg Length Inequality/etiology , Microvessels/diagnostic imaging , Radiography
2.
J Glob Antimicrob Resist ; 37: 199-207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641225

ABSTRACT

OBJECTIVES: The blaNDM gene was prevalent among children and became the predominant cause of severe infection in infants and children. This study aimed to investigate the epidemiology and molecular characteristics of blaNDM in Enterobacteriaceae among children in China. METHODS: Carbapenem-resistant Enterobacteriaceae (CRE) were collected in the Children's Hospital of Fudan University from January 2016 to December 2022. Five carbapenemase genes (blaKPC, blaNDM, blaVIM, blaIMP, blaOXA-48) were screened by PCR method. Multilocus sequence typing (MLST) was conducted for phylogenetic analyses. blaNDM-carrying plasmids were typed by PCR-based Incompatibility (Inc) typing method. Moreover, plasmid comparison was performed with 213 publicly available IncX3 plasmids. RESULTS: A total of 330 CRE strains were enrolled, 96.4% of which carried carbapenemase genes. blaNDM gene accounted for 64.8% (214 strains) and included four variants, including blaNDM-1 (59.8%), blaNDM-5 (39.3%), blaNDM-7 (0.5%), and blaNDM-9 (0.5%). There were no predominant MLST lineages of blaNDM carrying strains. IncX3 was the major plasmid carrying blaNDM-1 (68.0%) and blaNDM-5 (72.6%) and was dominant in blaNDM-Klebsiella penumoniae (79.8%), blaNDM-Escherichia coli (58.2%), and blaNDM-Enterobacter cloacae (61.0%), respectively. Most (79.0%) clinical IncX3 plasmids in the world carried blaNDM, and the prevalence of blaNDM in IncX3 plasmids was more common in China (95.8%) than other countries (58.1%, P <0.01). CONCLUSION: blaNDM is highly prevalent in CRE among children in China. The spread of blaNDM was mainly mediated by IncX3 plasmids. Surveillance and infection control on the spread of blaNDM among children are important.


Subject(s)
Bacterial Proteins , Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Multilocus Sequence Typing , Plasmids , beta-Lactamases , Humans , China/epidemiology , Plasmids/genetics , beta-Lactamases/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Child , Infant , Child, Preschool , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Microbial Sensitivity Tests , Female , Anti-Bacterial Agents/pharmacology , Phylogeny , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...