Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 81(4): 753-762, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32460278

ABSTRACT

In this study, the removal of salicylic acid (SA) in water by ozone (O3) and ultraviolet/ozone (UV/O3) processes was investigated. Results showed that more than 50% of SA (10 mg/L) could be effectively removed after 1 min during these two processes. However, the UV/O3 process was much more effective than the O3 process for SA mineralization, and the total organic carbon reduction after 30 min was 69.5% and 28.1%, respectively. In the two processes, the optimum pH value for SA removal was 4.3, while that for SA mineralization was 10.0. Both bicarbonate and dissolved organic carbon significantly inhibited SA removal during the two processes. Eleven oxidation byproducts were detected in O3 process, but only four byproducts were observed in UV/O3 process. Three hydroxylation aromatic products were identified as the initial byproducts during SA degradation. Glyoxylic acid monohydrate, glycolic acid, and oxalic acid were accumulated in O3 process but not observed in UV/O3 process. Oxalic acid was the only detected small molecular byproduct in UV/O3 process, and it could be further mineralized, thereby indicating that UV/O3 had a greater potential for degrading both SA and its reaction byproducts.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Hydrogen Peroxide , Oxidation-Reduction , Salicylic Acid , Ultraviolet Rays , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...