Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 403: 130832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754558

ABSTRACT

This study focused on optimizing the production of fermented Spirulina (FS) products using a bioactivity-guided strategy with Lactobacillus helveticus B-4526 and Kluyveromyces marxianus Y-329 in a 3-L bioreactor. Various operating conditions, including aeration rates and pH modes, were tested. While both microorganisms thrived under all conditions, the "cascade" mode, controlling dissolved oxygen, enhanced protein hydrolysis and antioxidant activity, as confirmed by SDS-PAGE and DPPH/TEAC assays, respectively. Screening revealed that "cascade" FS significantly decreased viability of colon cancer cells (HT-29) in a dose-dependent manner, with up to a 72 % reduction. Doses ≤ 500 µg mL-1 of "cascade" FS proved safe and effective in suppressing NO release without compromising cellular viability. Additionally, "cascade" FS exhibited diverse volatile organic compounds and reducing the characteristic "seaweed" aroma. These findings highlight "cascade" FS as a promising alternative food source with improved bioactive properties, urging further exploration of its bioactive compounds, particularly bioactive peptides.


Subject(s)
Bioreactors , Fermentation , Kluyveromyces , Lactobacillus helveticus , Spirulina , Kluyveromyces/metabolism , Lactobacillus helveticus/metabolism , Spirulina/metabolism , Humans , Cell Survival/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , HT29 Cells , Hydrogen-Ion Concentration , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology
2.
J Mol Graph Model ; 114: 108196, 2022 07.
Article in English | MEDLINE | ID: mdl-35500362

ABSTRACT

The connection of Epstein Barr virus (EBV) with diseases such as Burkitt Lymphoma, Hodgkin disease, multiple sclerosis, systemic lupus erythematosus and various B-cell lymphomas made EBV glycoproteins one of the most popular vaccine immunogens. As a protein being encoded by EBV, the viral membrane envelope protein gp350 is studied extensively due to its abundancy on the surface and its interaction with complementary receptor, CR2. The binding of CR2 and gp350 not only leads to the entrance of the virus to the B-cells, but also prevents CR2 and C3d protein interactions that are required for immune response. Thus, understanding the inhibition of gp350 activity is crucial for vaccine development. Although, the active residues on gp350 structure were determined by several mutational studies, the exact mechanism of CR2 binding is still not clear. To this end, we have performed molecular docking followed by molecular dynamics simulations and MM-PBSA on wildtype and several mutated gp350 and CR2 structures. Apart from identifying crucial amino acids, the results of per-residue decomposition energy analysis clarified the individual energy contributions of amino acids and were also found to be accurate in differentiating the active site residues in CR2 binding. Here, we highlight the role of binding region residues (linker-1) but more interestingly, the dynamic relation between the distant sites of gp350 (linker-2 and D3 residues) and CR2. These findings can lead further vaccine development strategies by pointing to the importance of computationally found novel regions that can be potentially used to modulate gp350 activity.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Amino Acids/metabolism , Antibodies, Monoclonal , Glycoproteins/metabolism , Herpesvirus 4, Human/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Receptors, Complement 3d/chemistry , Receptors, Complement 3d/metabolism , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...