Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(27): e202319832, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38652238

ABSTRACT

Widespread use of plant protection agents in agriculture is a major cause of pollution. Apart from active ingredients, the environmental impact of auxiliary synthetic polymers should be minimized if they are highly persistent. An alternative to synthetic polymers is the use of natural polysaccharides, which are abundant and biodegradable. In this study, we explore pectin microgels functionalized with anchor peptides (P-MAPs) to be used as an alternative biobased pesticide delivery system. Using copper as the active ingredient, P-MAPs effectively prevented infection of grapevine plants with downy mildew under semi-field conditions on par with commercial copper pesticides. By using anchor peptides, the microgels tightly bind to the leaf surface, exhibiting excellent rain fastness and prolonged fungicidal activity. Finally, P-MAPs are shown to be easily degradable by enzymes found in nature, demonstrating their negligible long-term impact on the environment.


Subject(s)
Microgels , Peptides , Pesticides , Microgels/chemistry , Peptides/chemistry , Peptides/pharmacology , Pesticides/chemistry , Pesticides/pharmacology , Vitis/chemistry , Pectins/chemistry , Copper/chemistry
2.
J R Soc Interface ; 20(207): 20230299, 2023 10.
Article in English | MEDLINE | ID: mdl-37876274

ABSTRACT

Non-thermal plasmas are used in various applications to inactivate biological agents or biomolecules. A complex cocktail of reactive species, (vacuum) UV radiation and in some cases exposure to an electric field together cause the detrimental effects. In contrast to this disruptive property of technical plasmas, we have shown previously that it is possible to use non-thermal plasma-generated species such as H2O2 as cosubstrates in biocatalytic reactions. One of the main limitations in plasma-driven biocatalysis is the relatively short enzyme lifetime under plasma-operating conditions. This challenge could be overcome by immobilizing the enzymes on inert carrier materials. Here, we tested whether immobilization is suited to protect proteins from inactivation by plasma. To this end, using a dielectric barrier discharge device (PlasmaDerm), plasma stability was tested for five enzymes immobilized on ten different carrier materials. A comparative analysis of the treatment times needed to reduce enzyme activity of immobilized and free enzyme by 30% showed a maximum increase by a factor of 44. Covalent immobilization on a partly hydrophobic carrier surface proved most effective. We conclude from the study, that immobilization universally protects enzymes under plasma-operating conditions, paving the way for new emerging applications.


Subject(s)
Enzymes, Immobilized , Hydrogen Peroxide , Enzymes, Immobilized/chemistry , Proteins
3.
J Appl Microbiol ; 133(4): 2417-2429, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35808848

ABSTRACT

AIMS: Actinobacteria are known to produce extracellular enzymes including DyPs. We set out to identify and characterize novel peroxidases from Streptomyces chartreusis NRRL 3882, because S. chartreusis belongs to the small group of actinobacteria with three different DyPs. METHODS AND RESULTS: The genome of the actinomycete S. chartreusis NRRL 3882 was mined for novel DyP-type peroxidases. Three genes encoding for DyP-type peroxidases were cloned and overexpressed in Escherichia coli. Subsequent characterization of the recombinant proteins included examination of operating conditions such as pH, temperature and H2 O2 concentrations, as well as substrate spectrum. Despite their high sequence similarity, the enzymes named SCDYP1-SCDYP3 presented distinct preferences regarding their operating conditions. They showed great divergence in H2 O2 tolerance and stability, with SCDYP2 being most active at concentrations above 50 mmol l-1 . Moreover, SCDYP1 and SCDYP3 preferred acidic pH (typical for DyP-type peroxidases), whereas SCDYP2 was most active at pH 8. CONCLUSIONS: Regarding the function of DyPs in nature, these results suggest that availability of different DyP variants with complementary activity profiles in one organism might convey evolutionary benefits. SIGNIFICANCE AND IMPACT OF THE STUDY: DyP-type peroxidases are able to degrade xenobiotic compounds and thus can be applied in biocatalysis and bioremediation. However, the native function of DyPs and the benefits for their producers largely remain to be elucidated.


Subject(s)
Actinobacteria , Peroxidases , Actinobacteria/genetics , Actinobacteria/metabolism , Coloring Agents/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Peroxidases/genetics , Peroxidases/metabolism , Recombinant Proteins/metabolism , Streptomyces , Xenobiotics/metabolism
4.
Proteomics ; 21(1): e2000038, 2021 01.
Article in English | MEDLINE | ID: mdl-32951352

ABSTRACT

Identification of the molecular target is a crucial step in evaluating novel antibiotics. To support target identification, a label-free method based on chromatographic co-elution has previously been developed. Target identification by chromatographic coelution (TICC) exploits the alteration of the elution profile of target-bound drug versus free drug in ion exchange (IEX) chromatography to identify potential target proteins from elution fractions. The applicability of TICC for antibiotic research is investigated by evaluating which proteins, that is, putative targets, can be monitored in Bacillus subtilis. Coelution of components of known protein complexes provides a read-out for how well the native state of proteins is conserved during chromatography. Rifampicin, which targets RNA polymerase, is used in a proof-of-concept study.


Subject(s)
Anti-Bacterial Agents , Chromatography, Ion Exchange , Proteins , Bacillus subtilis , Chromatography, High Pressure Liquid
5.
Article in English | MEDLINE | ID: mdl-33046497

ABSTRACT

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Subject(s)
Anti-Bacterial Agents , Proteomics , Anti-Bacterial Agents/pharmacology , Bacillus subtilis , Bacterial Proteins/genetics , Tetracyclines
6.
ChemSusChem ; 13(8): 2072-2079, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32026604

ABSTRACT

Peroxidases and peroxygenases are promising classes of enzymes for biocatalysis because of their ability to carry out one-electron oxidation reactions and stereoselective oxyfunctionalizations. However, industrial application is limited, as the major drawback is the sensitivity toward the required peroxide substrates. Herein, we report a novel biocatalysis approach to circumvent this shortcoming: in situ production of H2 O2 by dielectric barrier discharge plasma. The discharge plasma can be controlled to produce hydrogen peroxide at desired rates, yielding desired concentrations. Using horseradish peroxidase, it is demonstrated that hydrogen peroxide produced by plasma treatment can drive the enzymatic oxidation of model substrates. Fungal peroxygenase is then employed to convert ethylbenzene to (R)-1-phenylethanol with an ee of >96 % using plasma-generated hydrogen peroxide. As direct treatment of the reaction solution with plasma results in reduced enzyme activity, the use of plasma-treated liquid and protection strategies are investigated to increase total turnover. Technical plasmas present a noninvasive means to drive peroxide-based biotransformations.

SELECTION OF CITATIONS
SEARCH DETAIL
...