Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Rev Assoc Med Bras (1992) ; 70(5): e20231107, 2024.
Article in English | MEDLINE | ID: mdl-38775500

ABSTRACT

OBJECTIVE: Cellular and humoral immunity plays a role in the pathogenesis of vitiligo. T lymphocytes and natural killer cells involved in cellular immunity carry out their cytotoxic activities through perforin/granzyme-dependent granule exocytosis, in which granulysin and cathepsin-L are also involved. The aim of this study was to investigate the possible role of serum granulysin and cathepsin-L in the etiopathogenesis of vitiligo and their association with disease activity and severity. METHODS: This randomized, prospective case-control study was conducted with 46 vitiligo patients admitted to the hospital for vitiligo between January and November 2021 and 46 healthy volunteers of similar age and gender. Serum levels of granulysin and cathepsin-L were measured by the enzyme-linked immunosorbent assay method. RESULTS: The mean serum levels of granulysin and cathepsin-L were statistically significantly higher in vitiligo patients compared with the control group (p=0.048 and p=0.024, respectively). There was no statistically significant correlation between serum granulysin and serum cathepsin-L levels and disease severity in the patient group (r=0.30, p=0.062 and r=0.268, p=0.071, respectively). Disease activity also showed no significant association with serum granulysin and cathepsin-L levels (p=0.986 and p=0.962, respectively). CONCLUSION: Although granulysin and cathepsin-L are molecules involved in the pathogenesis of vitiligo, the use of these molecules may not be helpful in assessing disease activity and severity. It may be helpful to conduct comprehensive and prospective studies to find new molecules to fill the gap in this area.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Cathepsin L , Severity of Illness Index , Vitiligo , Humans , Vitiligo/blood , Female , Male , Antigens, Differentiation, T-Lymphocyte/blood , Adult , Case-Control Studies , Prospective Studies , Young Adult , Middle Aged , Cathepsin L/blood , Enzyme-Linked Immunosorbent Assay , Adolescent , Biomarkers/blood
2.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);70(5): e20231107, 2024. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1558930

ABSTRACT

SUMMARY OBJECTIVE: Cellular and humoral immunity plays a role in the pathogenesis of vitiligo. T lymphocytes and natural killer cells involved in cellular immunity carry out their cytotoxic activities through perforin/granzyme-dependent granule exocytosis, in which granulysin and cathepsin-L are also involved. The aim of this study was to investigate the possible role of serum granulysin and cathepsin-L in the etiopathogenesis of vitiligo and their association with disease activity and severity. METHODS: This randomized, prospective case-control study was conducted with 46 vitiligo patients admitted to the hospital for vitiligo between January and November 2021 and 46 healthy volunteers of similar age and gender. Serum levels of granulysin and cathepsin-L were measured by the enzyme-linked immunosorbent assay method. RESULTS: The mean serum levels of granulysin and cathepsin-L were statistically significantly higher in vitiligo patients compared with the control group (p=0.048 and p=0.024, respectively). There was no statistically significant correlation between serum granulysin and serum cathepsin-L levels and disease severity in the patient group (r=0.30, p=0.062 and r=0.268, p=0.071, respectively). Disease activity also showed no significant association with serum granulysin and cathepsin-L levels (p=0.986 and p=0.962, respectively). CONCLUSION: Although granulysin and cathepsin-L are molecules involved in the pathogenesis of vitiligo, the use of these molecules may not be helpful in assessing disease activity and severity. It may be helpful to conduct comprehensive and prospective studies to find new molecules to fill the gap in this area.

SELECTION OF CITATIONS
SEARCH DETAIL