Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24722, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298730

ABSTRACT

The reed straw is assessed as a potential source of widely available renewable biomass for biochar production and compared with two other waste-based biomasses, namely fruit stones blend, and brewery spent grains. The biochars were activated via steam and CO2. While steam activation yielded 12 % carbon from reed biomass, CO2 activation resulted in biomass degradation. The characterization of reed biochar showed a mesoporous structure and a high surface area of 514 m2/g. The adsorption tests displayed a decent adsorption capacity of biochar, with values of 92.6 mg/g for methylene violet dye and 35.7 mg/g for acid green dye. Only 1 g/L dosage of reed biochar was able to remove 99 % of the 50 mg/L methylene violet solution in 15 min and 60 % of the 50 mg/L acid green solution in 10 min. The obtained results demonstrate reed biomass as a suitable source for biochar production as well as reed-based biochar as a promising dye adsorbent.

2.
ACS Appl Polym Mater ; 4(4): 2908-2916, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35425902

ABSTRACT

We use dry-jet wet spinning in a coaxial configuration by extruding an aqueous colloidal suspension of oxidized nanocellulose (hydrogel shell) combined with airflow in the core. The coagulation of the hydrogel in a water bath results in hollow filaments (HF) that are drawn continuously at relatively high rates. Small-angle and wide-angle X-ray scattering (SAXS/WAXS) reveals the orientation and order of the cellulose sheath, depending on the applied shear flow and drying method (free-drying and drying under tension). The obtained dry HF show Young's modulus and tensile strength of up to 9 GPa and 66 MPa, respectively. Two types of phase-change materials (PCM), polyethylene glycol (PEG) and paraffin (PA), are used as infills to enable filaments for energy regulation. An increased strain (9%) is observed in the PCM-filled filaments (HF-PEG and HF-PA). The filaments display similar thermal behavior (dynamic scanning calorimetry) compared to the neat infill, PEG, or paraffin, reaching a maximum latent heat capacity of 170 J·g-1 (48-55 °C) and 169 J·g-1 (52-54 °C), respectively. Overall, this study demonstrates the facile and scalable production of two-component core-shell filaments that combine structural integrity, heat storage, and thermoregulation properties.

3.
ACS Appl Mater Interfaces ; 13(5): 6188-6200, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33522810

ABSTRACT

Green energy-storage materials enable the sustainable use of renewable energy and waste heat. As such, a form-stable phase-change nanohybrid (PCN) is demonstrated to solve the fluidity and leakage issues typical of phase-change materials (PCMs). Here, we introduce the advantage of solid-to-gel transition to overcome the drawbacks of typical solid-to-liquid counterparts in applications related to thermal energy storage and regulation. Polyethylene glycol (PEG) is form-stabilized with cellulose nanofibrils (CNFs) through surface interactions. The cellulosic nanofibrillar matrix is shown to act as an organogelator of highly loaded PEG melt (85 wt %) while ensuring the absence of leakage. CNFs also preserve the physical structure of the PCM and facilitate handling above its fusion temperature. The porous CNF scaffold, its crystalline structure, and the ability to hold PEG in the PCN are characterized by optical and scanning electron imaging, infrared spectroscopy, and X-ray diffraction. By the selection of the PEG molecular mass, the lightweight PCN provides a tailorable fusion temperature in the range between 18 and 65 °C for a latent heat storage of up to 146 J/g. The proposed PCN shows remarkable repeatability in latent heat storage after 100 heating/cooling cycles as assessed by differential scanning calorimetry. The thermal regulation and light-to-heat conversion of the PCN are confirmed via infrared thermal imaging under simulated sunlight and in a thermal chamber, outperforming those of a reference, commercial insulation material. Our PCN is easily processed as a structurally stable design, including three-dimensional, two-dimensional (films), and one-dimensional (filaments) materials; they are, respectively, synthesized by direct ink writing, casting/molding, and wet spinning. We demonstrate the prospects of the lightweight, green nanohybrid for smart-energy buildings and waste heat-generating electronics for thermal energy storage and management.

4.
Carbohydr Polym ; 254: 117279, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33357855

ABSTRACT

We use acetylated cellulose nanofibrils (AcCNF) to stabilize transient emulsions with paraffin that becomes shape-stable and encapsulated phase change material (PCM) upon cooling. Rheology measurements confirm the gel behavior and colloidal stability of the solid suspensions. We study the effect of nanofiber content on PCM leakage upon melting and compare the results to those from unmodified CNF. The nanostructured cellulose promotes paraffin phase transition, which improves the efficiency of thermal energy exchange. The leakage-proof microcapsules display high energy absorption capacity (ΔHm = 173 J/g) at high PCM loading (up to 80 wt%), while effectively controlling the extent of supercooling. An excellent thermal stability is observed during at least 100 heating/cooling cycles. Degradation takes place at 291 °C, indicating good thermal stability. The high energy density and the effective shape and thermal stabilization of the AcCNF-encapsulated paraffin points to a sustainable solution for thermal energy storage and conversion.


Subject(s)
Cellulose/analogs & derivatives , Nanofibers/chemistry , Acetylation , Capsules , Cellulose/chemistry , Cellulose/ultrastructure , Colloids , Drug Stability , Emulsions , Hot Temperature , Microscopy, Electron, Scanning , Nanofibers/ultrastructure , Paraffin/chemistry , Phase Transition , Rheology , Suspensions , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...