Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Physiol Biochem ; 42(6): 1509-1520, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27216494

ABSTRACT

Many fish species undergo natural starvation periods. Adaptation to starvation is possible through the activation of behavioral, biochemical and physiological mechanisms. Knowledge of the effect of dietary nutrients on the intermediary metabolism during starvation and refeeding can be useful to improve fish health and optimize aquaculture production. To analyze the effect of dietary nutrients on liver metabolism of Siberian sturgeon (Acipenser baerii) submitted to starvation and refeeding, four isoenergetic diets differing in nutrient composition were designed: LP-St (38 % protein, 12 % lipid, 36 % carbohydrate), HP-St (44 % protein, 10 % lipid, 30 % carbohydrate), LP-L (38 % protein, 18 % lipid, 25 % carbohydrate) and HP-L (44 % protein, 16 % lipid, 22 % carbohydrate). Four groups of fish were fed 3 weeks to satiety with the corresponding diet, starved for 2 weeks and then refeed 5 weeks to satiety on the same diet. Starvation mobilized the hepatic lipid store to a greater extent than glycogen. Starvation increased superoxide dismutase activity irrespective of the diet, while low protein diets (LP-St and LP-L) increased catalase activity. The oxidative damage decreased after 5 weeks of refeeding. Refeeding the starved fish on the HP-St diet promoted the greatest growth performance. In addition to reporting for the first time the effect of diet composition on growth, liver composition and antioxidant activities in Siberian sturgeon submitted to starvation and refeeding, our findings suggest that refeeding on HP-St diet stimulated the use of dietary carbohydrates and allowed a protein sparing effect in Siberian sturgeon.


Subject(s)
Dietary Carbohydrates/pharmacology , Dietary Fats/pharmacology , Dietary Proteins/pharmacology , Fishes , Liver/metabolism , Starvation/metabolism , Animals , Aquaculture/methods , Catalase/metabolism , Diet , Fishes/growth & development , Fishes/metabolism , Liver Glycogen/metabolism , Superoxide Dismutase/metabolism
2.
Environ Sci Pollut Res Int ; 23(10): 10139-44, 2016 May.
Article in English | MEDLINE | ID: mdl-26873823

ABSTRACT

Silver nanoparticles (AgNPs) are widely used in consumer products mainly due to their antimicrobial action. The rapidly increasing use of nanoparticles (NPs) has driven more attention to their possible ecotoxicological effects. In this study, the acute toxicity of colloidal AgNPs was evaluated during the embryonic stage of Persian sturgeon (Acipenser persicus) and starry sturgeon (Acipenser stellatus) at concentrations of 0, 0.25, 0.5, 1, 2, 4, and 8 mg/L. Fertilized eggs (75 eggs per replicate) were exposed to aforementioned concentrations for 96 h in triplicate. 96-h LC50 values in Persian sturgeon and starry sturgeon were calculated as 0.163 and 0.158 mg/L, respectively. Furthermore, in starry sturgeon, the short-term effects of AgNPs on the hatching rate, survival rate, and Ag accumulation during early life stages (before active feeding commences) were also analyzed at concentrations of 0, 0.025, 0.05, and 0.1 mg/L of colloidal AgNPs. The highest silver accumulation occurred in larvae exposed to 0.1 mg/L AgNPs; however, the body burden of silver did not alter survival rate, and there were no significant differences among treatments. Based on the obtained results from the acute toxicity exposures, AgNPs induced a concentration-dependent toxicity in both species during early life stages, while complementary studies are suggested for investigating their short-term effects in detail.


Subject(s)
Fishes , Metal Nanoparticles/toxicity , Silver/toxicity , Water Pollutants, Chemical/toxicity , Animals , Larva/drug effects , Lethal Dose 50
SELECTION OF CITATIONS
SEARCH DETAIL
...