Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(7)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38364009

ABSTRACT

Bromine atom (Br) reactions lead to ozone depletion in the troposphere and stratosphere. Photodegradation of bromocarbons is one of the main sources of bromine atoms in the atmosphere. Here, we use high-level ab initio methods, including spin-orbit effects, to study the photodissociation of the CH2Br radical. All possible fragmentation pathways, namely CH2Br + hν → CH2 + Br, HCBr + H, and CBr + H2, have been analyzed. Potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distance of each pathway have been calculated. Considering the actinic fluxes of solar irradiation in the troposphere and in the stratosphere in the relevant range of frequencies, it is found that the first five excited states of CH2Br can be accessed from the ground state. Analysis of the potential curves shows that the pathways producing CH2 + Br and HCBr + H can proceed through a fast direct dissociation mechanism, while the pathway leading to CBr + H2 involves much slower dissociation mechanisms like internal conversion between electronic states, predissociation, or tunneling through exit barriers. The main implications are that the two faster channels are predicted to be dominant, and the slower pathway is expected to be less relevant. The tropospheric and stratospheric solar actinic fluxes also allow for further dissociation of the HCBr and CBr fragments, generating additional Br atoms, provided that they survive possible collisions with other atmospheric reagents. Finally, we discuss the possible effect of each of the three CH2Br dissociation pathways on the depletion of atmospheric ozone.

2.
J Chem Phys ; 150(19): 194102, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31117793

ABSTRACT

Spectroscopic and structural properties of methoxymethyl radical (CH3OCH2, RDME) are determined using explicitly correlated ab initio methods. This radical of astrophysical and atmospheric relevance has not been fully characterized at low temperatures, which has delayed astrophysical research. We provide rovibrational parameters, excitations to the low energy electronic states, torsional and inversion barriers, and low vibrational energy levels. In the electronic ground state (X2A), which appears "clean" from nonadiabatic effects, the minimum energy structure is an asymmetric geometry whose rotational constants and dipole moment have been determined to be A0 = 46 718.67 MHz, B0 = 10 748.42 MHz, and C0 = 9272.51 MHz, and 1.432D (µA = 0.695D, µB = 1.215D, µC = 0.302D), respectively. A variational procedure has been applied to determine torsion-inversion energy levels. Each level splits into 3 subcomponents (A1/A2 and E) corresponding to the three methyl torsion minima. Although the potential energy surface presents 12 minima, at low temperatures, the infrared band shapes correspond to a surface with only three minima because the top of the inversion Vα barrier at α = 0° (109 cm-1) stands below the zero point vibrational energy and the CH2 torsional barrier is relatively high (∼2000 cm-1). The methyl torsion barrier was computed to be ∼500 cm-1 and produces a splitting of 0.01 cm-1 of the ground vibrational state.

3.
Phys Chem Chem Phys ; 19(46): 31245-31254, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29143005

ABSTRACT

The electronic states and the spin-orbit couplings between them involved in the photodissociation process of the radical molecules CH3X, CH3X → CH3 + X (X = O, S), taking place after the Ã(2A1) ← X[combining tilde](2E) transition, have been investigated using highly correlated ab initio techniques. A two-dimensional representation of both the potential-energy surfaces (PESs) and the couplings is generated. This description includes the C-X dissociative mode and the CH3 umbrella mode. Spin-orbit effects are found to play a relevant role in the shape of the excited state potential-energy surfaces, particularly in the CH3S case where the spin-orbit couplings are more than twice more intense than in CH3O. The potential surfaces and couplings reported here for the present set of electronic states allow for the first complete description of the above photodissociation process. The different photodissociation mechanisms are analyzed and discussed in light of the results obtained.

4.
J Phys Chem Lett ; 8(11): 2420-2424, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28498666

ABSTRACT

Full-dimensional semiclassical dynamical calculations combining classical paths and Bohr quantization of product internal motions are reported for the prototype photofragmentation of isocyanic acid in the S1 state. These calculations allow one to closely reproduce for the first time key features of state-of-the-art imaging measurements at photolysis wavelengths of 201 and 210 nm while providing insight into the underlying dissociation mechanism. Quantum scattering calculations being beyond reach for most polyatomic fissions, pair-correlated data on these processes are much more often measured than predicted. Our theoretical approach can be used to fill this gap.

5.
J Phys Chem A ; 120(10): 1669-76, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26911361

ABSTRACT

Small methane clusters (CH4)n are irradiated using intense femtosecond laser excitation at 624 nm. The ionized species and those resulting from their fragmentation are detected via time-of-flight mass spectrometry (TOF MS). We find evidence of bound, multiply charged methane molecules and clusters resulting from Coulomb explosion upon exposure to highly energetic, ultrafast radiation. The assignment of the mass spectra is done after first-principles calculations (at the (R)MP2/aug-cc-pVXZ (X = D,T) level) on the charged (CH4)n(q+) clusters (n = 1-4, q = 1-4). We also considered the cluster stabilities and fragments that may result from intracluster molecular reactivity. Complex intracluster ion-molecule reactions induced by photoionization are expected to occur. Interestingly, we show that multi charged small methane clusters undergo intracluster reactions and fragmentations which are different from those observed for isolated methane ions or for large ionized methane clusters.

6.
J Chem Phys ; 145(24): 244305, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-28049302

ABSTRACT

Ab initio studies on CHx(OH)4-x (x = 0-3) polyols are carried out to derive their structural and spectroscopic features. Several stereoisomers (both equilibrium structures and transition states) are found. Some are predicted here for the first time. We determined hence their geometrical parameters, vibrational frequencies, electronic excitation energies for the singlet manifold, and IR spectra. While the IR spectra for all polyols present similar shapes, their UV spectra exhibit however distinct band origin that are specific to each polyol and more interestingly to each diasteroisomer. Stereoelectronic effects are also noticed and discussed. It is suggested that UV spectroscopy is an efficient probe to experimentally identify polyols in mixtures involving polyols.

7.
J Chem Phys ; 143(16): 164301, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26520507

ABSTRACT

The low-energy electronic states of NSO anion and its SNO isomeric form for the singlet, triplet, and quintet spin multiplicities have been investigated by accurate ab initio approaches and large atomic basis sets. One-dimensional cuts of the three-dimensional potential energy surfaces (PESs) along selected interatomic distances and bending angles for these states have been calculated to assess the formation and stability of NSO(-) and SNO(-) in the gas phase. Results show that these anions have two low-energy states (X̃(1)A(') and 1(3)A″) that are bound and stable with respect to electron detachment. Owing to the energetic position of the dissociating asymptotes of the neutral and anionic species, several electronic excited states are suggested to be stable with respect to the electron autodetachment process in the long-range parts of the potentials before reaching the molecular region. The nature of the PESs in these regions and their implications and effects on the formation of SNO(-) from atomic and molecular fragments are discussed. This information is essential for a better understanding of the potential role of these species in diverse media.

8.
J Chem Phys ; 141(1): 014302, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-25005284

ABSTRACT

Using ab initio methodology, we studied the IO(q+) (q = 2, 3, 4) multi-charged ions. Benchmark computations on the IO(X(2)Π) neutral species allow validate the current procedure. For IO(2+), several potential wells were found on the ground and the electronic excited states potentials with potential barriers with respect to dissociation, where this dication can exist in the gas phase as long-lived metastable molecules. We confirm hence the recent observation of the dication by mass spectrometry. Moreover, we predict the existence of the metastable IO(3+) trication, where a shallow potential well along the IO internuclear distance is computed. This potential well supports more than 10 vibrational levels. The IO(3+) excited states are repulsive in nature, as well as the computed potentials for the IO(4+) tetracation. For the bound states, we give a set of spectroscopic parameters including excitation transition energies, equilibrium distances, harmonic and anharmonic vibrational terms, and rotational constants. At the MRCI + Q/aug-cc-pV5Z(-PP) level, the adiabatic double and triple ionization energies of IO are computed to be ~28.1 eV and ~55.0 eV, respectively.

9.
Phys Chem Chem Phys ; 15(25): 10158-66, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23652839

ABSTRACT

The weakly bound charge transfer OMgOO(+)((2)Π) ion is a quasi-linear-bent Renner-Teller system with a non-zero spin-orbit contribution. The six-dimensional potential energy surfaces (6D-PESs) for the two Renner-Teller components have been generated in internal coordinates. After benchmarking calculations, we show that the newly implemented explicitly correlated coupled cluster approach (RCCSD(T)-F12) in connection with the cc-pVTZ-F12 basis set provides an accurate description of the full 6D-PESs of this molecular system. Both components are bent with low barriers to linearity along the in-plane angles. The potentials are also very flat along the out-of-plane torsional mode. Hence, this confers a pronounced quasi linear character to OMgOO(+). Moreover, the parts of the potentials relative to the middle bond are shallow and strongly coupled to the bending motions. The parts of the PESs corresponding to the OO and MgO external diatom stretch coordinates differ strongly from those relative to the four other internal coordinates. Special care was taken to correctly account for such behaviors during the generation of the grid and fitting procedures. The present theoretical methodology can be used for mapping the 6D-PESs of other atmospherically important charge transfer complexes presenting similar features such as ONNO(+), O4(+), OOCO(+) or M-CO2(+) (where M is an alkali, magnesium or aluminum metal).

10.
J Chem Phys ; 136(2): 024316, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22260588

ABSTRACT

Accurate ab initio calculations are performed to investigate the stable isomers of [MgO(3)](+) and its lowest electronic states at both molecular and asymptotic regions. The calculations are done using large basis sets and configuration interaction methods including the complete active space self-consistent field, the internally contracted multi-reference configuration interaction, the standard coupled cluster (RCCSD(T)) approaches and the newly implemented explicitly correlated coupled cluster method (RCCSD(T)-F12). The presence of three stable forms is predicted: a cyclic global minimum c-MgO(3)(+), which is followed by a quasi-linear isomer, l2-MgO(3)(+). A third isomer of C(s) symmetry (l1-MgO(3)(+)) is also found. Moreover, we computed the one-dimensional cuts of the six-dimensional potential energy surfaces of the lowest doublet and quartet electronic states of [MgO(3)](+) along the R(MgO) and R(OO) stretching coordinates covering both the molecular and the asymptotic regions. These curves are used later for discussing the metastability of this cation and to propose plausible mechanisms for the Mg(+) + O(3) atmospherically important ion-molecule reaction and related reactive channels.

11.
J Chem Phys ; 133(14): 144302, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20949995

ABSTRACT

We used multiconfigurational methods and a large basis set to compute the potential energy curves of the valence and valence-Rydberg electronic states of MgO molecule. New bound electronic states are found. Using these highly correlated wave functions, we evaluated their mutual spin-orbit couplings and transition moment integrals. For the bound electronic states of MgO, we deduced an accurate set of spectroscopic constants that agree remarkably well with experimental results. Moreover, our potentials, transition moments, and spin-orbit coupling evolutions are incorporated into Fermi golden rule calculations to deduce the radiative lifetimes of MgO(B (1)Σ(+)) rovibrational levels and the natural lifetimes of MgO(A (1)Π) vibrational levels, where a good agreement is found with experimental values. Finally, we suggest new routes for the production of cold Mg and O atoms and cold MgO molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...