Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 12: 1310593, 2024.
Article in English | MEDLINE | ID: mdl-38415274

ABSTRACT

Over 8% of couples worldwide are affected by infertility and nearly half of these cases are due to male-specific issues where the underlying cause is often unknown. Therefore, discovery of new genetic factors contributing to male-specific infertility in model organisms can enhance our understanding of the etiology of this disorder. Here we show that murine ATP10A, a phospholipid flippase, is highly expressed in male reproductive organs, specifically the testes and vas deferens. Therefore, we tested the influence of ATP10A on reproduction by examining fertility of Atp10A knockout mice. Our findings reveal that Atp10A deficiency leads to male-specific infertility, but does not perturb fertility in the females. The Atp10A deficient male mice exhibit smaller testes, reduced sperm count (oligozoospermia) and lower sperm motility (asthenozoospermia). Additionally, Atp10A deficient mice display testes and vas deferens histopathological abnormalities, as well as altered total and relative amounts of hormones associated with the hypothalamic-pituitary-gonadal axis. Surprisingly, circulating testosterone is elevated 2-fold in the Atp10A knockout mice while luteinizing hormone, follicle stimulating hormone, and inhibin B levels were not significantly different from WT littermates. The knockout mice also exhibit elevated levels of gonadotropin receptors and alterations to ERK, p38 MAPK, Akt, and cPLA2-dependent signaling in the testes. Atp10A was knocked out in the C57BL/6J background, which also carries an inactivating nonsense mutation in the closely related lipid flippase, Atp10D. We have corrected the Atp10D nonsense mutation using CRISPR/Cas9 and determined that loss of Atp10A alone is sufficient to cause infertility in male mice. Collectively, these findings highlight the critical role of ATP10A in male fertility in mice and provide valuable insights into the underlying molecular mechanisms.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119700, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382846

ABSTRACT

Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.


Subject(s)
Adenosine Triphosphatases , Caenorhabditis elegans , Animals , Adenosine Triphosphatases/metabolism , Caenorhabditis elegans/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Lipids , Mammals/metabolism
3.
Sci Rep ; 14(1): 343, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172157

ABSTRACT

Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.


Subject(s)
Dyslipidemias , Insulin Resistance , Animals , Female , Male , Mice , Cholesterol/metabolism , Diet, High-Fat , Dyslipidemias/genetics , Dyslipidemias/metabolism , Insulin Resistance/physiology , Lipid Metabolism/genetics , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Triglycerides
4.
Cancers (Basel) ; 15(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686603

ABSTRACT

Adaptations of cancer cells for survival are remarkable. One of the most significant properties of cancer cells to prevent the immune system response and resist chemotherapy is the altered lipid metabolism and resulting irregular cell membrane composition. The phospholipid distribution in the plasma membrane of normal animal cells is distinctly asymmetric. Lipid flippases are a family of enzymes regulating membrane asymmetry, and the main class of flippases are type IV P-type ATPases (P4-ATPases). Alteration in the function of flippases results in changes to membrane organization. For some lipids, such as phosphatidylserine, the changes are so drastic that they are considered cancer biomarkers. This review will analyze and discuss recent publications highlighting the role that P4-ATPases play in the development and progression of various cancer types, as well as prospects of targeting P4-ATPases for anti-cancer treatment.

5.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37398141

ABSTRACT

Genetic association studies have linked ATP10A and closely related type IV P-type ATPases (P4-ATPases) to insulin resistance and vascular complications, such as atherosclerosis. ATP10A translocates phosphatidylcholine and glucosylceramide across cell membranes, and these lipids or their metabolites play important roles in signal transduction pathways regulating metabolism. However, the influence of ATP10A on lipid metabolism in mice has not been explored. Here, we generated gene-specific Atp10A knockout mice and show that Atp10A-/- mice fed a high-fat diet did not gain excess weight relative to wild-type littermates. However, Atp10A-/- mice displayed female-specific dyslipidemia characterized by elevated plasma triglycerides, free fatty acids and cholesterol, as well as altered VLDL and HDL properties. We also observed increased circulating levels of several sphingolipid species along with reduced levels of eicosanoids and bile acids. The Atp10A-/- mice also displayed hepatic insulin resistance without perturbations to whole-body glucose homeostasis. Thus, ATP10A has a sex-specific role in regulating plasma lipid composition and maintaining hepatic liver insulin sensitivity in mice.

6.
J Cell Sci ; 134(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34841431

ABSTRACT

The main laminin-binding integrins α3ß1, α6ß1 and α6ß4 are co-expressed in the developing kidney collecting duct system. We previously showed that deleting the integrin α3 or α6 subunit in the ureteric bud, which gives rise to the kidney collecting system, caused either a mild or no branching morphogenesis phenotype, respectively. To determine whether these two integrin subunits cooperate in kidney collecting duct development, we deleted α3 and α6 in the developing ureteric bud. The collecting system of the double knockout phenocopied the α3 integrin conditional knockout. However, with age, the mice developed severe inflammation and fibrosis around the collecting ducts, resulting in kidney failure. Integrin α3α6-null collecting duct epithelial cells showed increased secretion of pro-inflammatory cytokines and displayed mesenchymal characteristics, causing loss of barrier function. These features resulted from increased nuclear factor kappa-B (NF-κB) activity, which regulated the Snail and Slug (also known as Snai1 and Snai2, respectively) transcription factors and their downstream targets. These data suggest that laminin-binding integrins play a key role in the maintenance of kidney tubule epithelial cell polarity and decrease pro-inflammatory cytokine secretion by regulating NF-κB-dependent signaling.


Subject(s)
Integrins , Kidney Tubules, Collecting , Animals , Epithelial Cells , Inflammation/genetics , Integrin alpha3beta1 , Integrins/genetics , Laminin/genetics , Mice , NF-kappa B/genetics
7.
Matrix Biol ; 77: 101-116, 2019 04.
Article in English | MEDLINE | ID: mdl-30193894

ABSTRACT

Integrins, the major receptors for cell-extracellular matrix (ECM) interactions, regulate multiple cell biological processes including adhesion, migration, proliferation and growth factor-dependent signaling. The principal laminin (LM) binding integrins α3ß1, α6ß1 and α6ß4 are usually co-expressed in cells and bind to multiple laminins with different affinities making it difficult to define their specific function. In this study, we generated kidney epithelial collecting duct (CD) cells that lack both the α3 and α6 integrin subunits. This deletion impaired cell adhesion and migration to LM-332 and LM-511 more than deleting α3 or α6 alone. Cell adhesion mediated by both α3ß1 and α6 integrins was PI3K independent, but required K63-linked polyubiquitination of Akt by the ubiquitin-modifying enzyme TRAF6. Moreover, we provide evidence that glial-derived neurotrophic factor (GDNF) and fibroblast growth factor 10 (FGF10)- mediated cell signaling, spreading and proliferation were severely compromised in double integrin α3/α6- but not single α3- or α6-null CD cells. Interestingly, these growth factor-dependent cell functions required both PI3K- and TRAF6-dependent Akt activation. These data suggest that expression of the integrin α3 or α6 subunit is sufficient to mediate GDNF- and FGF10-dependent spreading, proliferation and signaling on LM-511. Thus, our study shows that α3 and α6 containing integrins promote distinct functions and signaling by CD cells on laminin substrata.


Subject(s)
Cell Adhesion Molecules/metabolism , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Integrin alpha3/metabolism , Integrin alpha6/metabolism , Laminin/metabolism , Signal Transduction , Animals , Cell Adhesion/drug effects , Cell Adhesion Molecules/chemistry , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Fibroblast Growth Factor 10/pharmacology , Gene Deletion , Gene Expression Regulation , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Humans , Integrin alpha3/genetics , Integrin alpha3beta1/genetics , Integrin alpha3beta1/metabolism , Integrin alpha6/genetics , Integrin alpha6beta1/genetics , Integrin alpha6beta1/metabolism , Integrin alpha6beta4/genetics , Integrin alpha6beta4/metabolism , Intracellular Signaling Peptides and Proteins , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/metabolism , Laminin/chemistry , Mice , Mice, Knockout , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Primary Cell Culture , Protein Binding , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Kalinin
8.
Matrix Biol ; 57-58: 244-257, 2017 01.
Article in English | MEDLINE | ID: mdl-28043890

ABSTRACT

Laminins are a major constituent of the basement membranes of the kidney collecting system. Integrins, transmembrane receptors formed by non-covalently bound α and ß subunits, serve as laminin receptors, but their role in development and homeostasis of the kidney collecting system is poorly defined. Integrin α3ß1, one of the major laminin receptors, plays a minor role in kidney collecting system development, while the role of α6 containing integrins (α6ß1 and α6ß4), the other major laminin receptors, is unknown. Patients with mutations in α6 containing integrins not only develop epidermolysis bullosa, but also have abnormalities in the kidney collecting system. In this study, we show that selectively deleting the α6 or ß4 integrin subunits at the initiation of ureteric bud development in mice does not affect morphogenesis. However, the collecting system becomes dilated and dysmorphic as the mice age. The collecting system in both null genotypes was also highly susceptible to unilateral ureteric obstruction injury with evidence of excessive tubule dilatation and epithelial cell apoptosis. Mechanistically, integrin α6-null collecting duct cells are unable to withstand high mechanical force when adhered to laminin. Thus, we conclude that α6 integrins are important for maintaining the integrity of the kidney collecting system by enhancing tight adhesion of the epithelial cells to the basement membrane. These data give a mechanistic explanation for the association between kidney collecting system abnormalities in patients and epidermolysis bullosa.


Subject(s)
Basement Membrane/metabolism , Integrin alpha6beta1/genetics , Integrin alpha6beta4/genetics , Kidney Tubules, Collecting/metabolism , Laminin/genetics , Ureteral Obstruction/metabolism , Animals , Apoptosis , Basement Membrane/pathology , Cell Adhesion , Cell Movement , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibrosis , Gene Expression Regulation , Humans , Integrin alpha6beta1/deficiency , Integrin alpha6beta4/deficiency , Kidney Tubules, Collecting/pathology , Laminin/metabolism , Mice , Mice, Knockout , Protein Binding , Signal Transduction , Ureter/surgery , Ureteral Obstruction/pathology , Ureteral Obstruction/surgery
9.
J Lipid Res ; 57(8): 1552-63, 2016 08.
Article in English | MEDLINE | ID: mdl-27313059

ABSTRACT

Rapidly multiplying cancer cells synthesize greater amounts of cholesterol to build their membranes. Cholesterol-lowering drugs (statins) are currently in clinical trials for anticancer chemotherapy. However, given at higher doses, statins cause serious side effects by inhibiting the formation of other biologically important molecules derived from mevalonate. Sterol 14α-demethylase (CYP51), which acts 10 steps downstream, is potentially a more specific drug target because this portion of the pathway is fully committed to cholesterol production. However, screening a variety of commercial and experimental inhibitors of microbial CYP51 orthologs revealed that most of them (including all clinical antifungals) weakly inhibit human CYP51 activity, even if they display high apparent spectral binding affinity. Only one relatively potent compound, (R)-N-(1-(3,4'-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VFV), was identified. VFV has been further tested in cellular experiments and found to decrease proliferation of different cancer cell types. The crystal structures of human CYP51-VFV complexes (2.0 and 2.5 Å) both display a 2:1 inhibitor/enzyme stoichiometry, provide molecular insights regarding a broader substrate profile, faster catalysis, and weaker susceptibility of human CYP51 to inhibition, and outline directions for the development of more potent inhibitors.


Subject(s)
14-alpha Demethylase Inhibitors/chemistry , Antineoplastic Agents/chemistry , Sterol 14-Demethylase/chemistry , Antifungal Agents , Antiprotozoal Agents/chemistry , Catalytic Domain , Cell Line, Tumor , Cholestadienols/chemistry , Crystallography, X-Ray , Drug Design , Drug Screening Assays, Antitumor , Humans , Hydrogen Bonding , Lanosterol/chemistry , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical
10.
Mol Biol Cell ; 26(10): 1857-74, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25808491

ABSTRACT

The collecting system of the kidney develops from the ureteric bud (UB), which undergoes branching morphogenesis, a process regulated by multiple factors, including integrin-extracellular matrix interactions. The laminin (LM)-binding integrin α3ß1 is crucial for this developmental program; however, the LM types and LM/integrin α3ß1-dependent signaling pathways are poorly defined. We show that α3 chain-containing LMs promote normal UB branching morphogenesis and that LM-332 is a better substrate than LM-511 for stimulating integrin α3ß1-dependent collecting duct cell functions. We demonstrate that integrin α3ß1-mediated cell adhesion to LM-332 modulates Akt activation in the developing collecting system and that Akt activation is PI3K independent but requires decreased PTEN activity and K63-linked polyubiquitination. We identified the ubiquitin-modifying enzyme TRAF6 as an interactor with the integrin ß1 subunit and regulator of integrin α3ß1-dependent Akt activation. Finally, we established that the developmental defects of TRAF6- and integrin α3-null mouse kidneys are similar. Thus K63-linked polyubiquitination plays a previously unrecognized role in integrin α3ß1-dependent cell signaling required for UB development and may represent a novel mechanism whereby integrins regulate signaling pathways.


Subject(s)
Integrin alpha3beta1/metabolism , Kidney Tubules, Collecting/embryology , Morphogenesis , Proto-Oncogene Proteins c-akt/metabolism , TNF Receptor-Associated Factor 6/metabolism , Animals , Kidney Tubules, Collecting/metabolism , Mice , Mice, Knockout , Signal Transduction , TNF Receptor-Associated Factor 6/genetics , Ubiquitination
11.
Anticancer Res ; 32(7): 2487-99, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22753705

ABSTRACT

In cancer treatment, radiation therapy is second only to surgery in terms of its curative potential. However, radiation-induced tumor cell death is limited by a number of factors, including the adverse response of the tumor microenvironment to radiation treatment and tumor-acquired mechanisms of evasive resistance. Recent attempts to enhance the therapeutic efficiency of ionizing radiation have produced promising results. In this review article, we discuss the development of novel therapeutic strategies for tumor sensitization to radiation therapy. These innovative approaches incorporate the involvement of the immune response and the role of cancer stem cells, as well as direct targeting of signal transduction pathways. Taken together, these concerted efforts demonstrate that the augmentation of radiotherapeutic efficacy results in significantly improved control not only of local disease, but also of metastatic spread and improved overall patient survival.


Subject(s)
Neoplasms/drug therapy , Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacology , Animals , Humans , Neoplasms/metabolism , Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects
12.
Anticancer Res ; 32(1): 1-12, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22213282

ABSTRACT

Current attempts to disrupt the complex process of tumor blood vessel formation are predominantly focused on targeting the vascular endothelial growth factor (VEGF)-VEGFR signaling pathway. Although clinically proven to inhibit VEGF and its receptors, these pharmacologic agents are selective, but not specific. Consequently, many of the approved inhibitors also impair other molecular targets leading to increased toxicity. Current efforts to unravel the complexity of tumor angiogenesis have identified several new candidates for antivascular therapy. In this review article, we identify well-established and novel angiogenic molecules and discuss benefits of the therapeutic approaches based on targeting of such factors.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Neoplasms/blood supply , Neoplasms/drug therapy , Neovascularization, Pathologic/prevention & control , Signal Transduction/drug effects , Humans
13.
Int J Parasitol Drugs Drug Resist ; 2: 178-186, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23504044

ABSTRACT

CYP51 (sterol 14α-demethylase) is a cytochrome P450 enzyme essential for sterol biosynthesis and the primary target for clinical and agricultural antifungal azoles. The azoles that are currently in clinical use for systemic fungal infections represent modifications of two basic scaffolds, ketoconazole and fluconazole, all of them being selected based on their antiparasitic activity in cellular experiments. By studying direct inhibition of CYP51 activity across phylogeny including human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum, we identified three novel protozoa-specific inhibitory scaffolds, their inhibitory potency correlating well with antiprotozoan activity. VNI scaffold (carboxamide containing ß-phenyl-imidazoles) is the most promising among them: killing T. cruzi amastigotes at low nanomolar concentration, it is also easy to synthesize and nontoxic. Oral administration of VNI (up to 400 mg/kg) neither leads to mortality nor reveals significant side effects up to 48 h post treatment using an experimental mouse model of acute toxicity. Trypanosomatidae CYP51 crystal structures determined in the ligand-free state and complexed with several azole inhibitors as well as a substrate analog revealed high rigidity of the CYP51 substrate binding cavity, which must be essential for the enzyme strict substrate specificity and functional conservation. Explaining profound potency of the VNI inhibitory scaffold, the structures also outline guidelines for its further development. First steps of the VNI scaffold optimization have been undertaken; the results presented here support the notion that CYP51 structure-based rational design of more efficient, pathogen-specific inhibitors represents a highly promising direction.

14.
PLoS One ; 6(7): e22182, 2011.
Article in English | MEDLINE | ID: mdl-21799791

ABSTRACT

Despite wide margins and high dose irradiation, unresectable malignant glioma (MG) is less responsive to radiation and is uniformly fatal. We previously found that cytosolic phospholipase A2 (cPLA(2)) is a molecular target for radiosensitizing cancer through the vascular endothelium. Autotaxin (ATX) and lysophosphatidic acid (LPA) receptors are downstream from cPLA(2) and highly expressed in MG. Using the ATX and LPA receptor inhibitor, α-bromomethylene phosphonate LPA (BrP-LPA), we studied ATX and LPA receptors as potential molecular targets for the radiosensitization of tumor vasculature in MG. Treatment of Human Umbilical Endothelial cells (HUVEC) and mouse brain microvascular cells bEND.3 with 5 µmol/L BrP-LPA and 3 Gy irradiation showed decreased clonogenic survival, tubule formation, and migration. Exogenous addition of LPA showed radioprotection that was abrogated in the presence of BrP-LPA. In co-culture experiments using bEND.3 and mouse GL-261 glioma cells, treatment with BrP-LPA reduced Akt phosphorylation in both irradiated cell lines and decreased survival and migration of irradiated GL-261 cells. Using siRNA to knock down LPA receptors LPA1, LPA2 or LPA3 in HUVEC, we demonstrated that knockdown of LPA2 but neither LPA1 nor LPA3 led to increased viability and proliferation. However, knockdown of LPA1 and LPA3 but not LPA2 resulted in complete abrogation of tubule formation implying that LPA1 and LPA3 on endothelial cells are likely targets of BrP-LPA radiosensitizing effect. Using heterotopic tumor models of GL-261, mice treated with BrP-LPA and irradiation showed a tumor growth delay of 6.8 days compared to mice treated with irradiation alone indicating that inhibition of ATX and LPA receptors may significantly improve malignant glioma response to radiation therapy. These findings identify ATX and LPA receptors as molecular targets for the development of radiosensitizers for MG.


Subject(s)
Glioma/blood supply , Glioma/metabolism , Molecular Targeted Therapy , Neovascularization, Pathologic/metabolism , Phosphoric Diester Hydrolases/metabolism , Radiation-Sensitizing Agents/pharmacology , Receptors, Lysophosphatidic Acid/metabolism , Animals , Cell Death/drug effects , Cell Death/radiation effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/radiation effects , Glioma/pathology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/radiation effects , Humans , Lysophospholipids/pharmacology , Mice , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/radiotherapy , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Signal Transduction/drug effects
15.
Anticancer Agents Med Chem ; 11(8): 712-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21707499

ABSTRACT

Blood vessel formation is a fundamental process that occurs during both normal and pathologic periods of tissue growth. In aggressive malignancies such as glioblastoma multiforme (GBM), vascularization is often excessive and facilitates tumor progression. In an attempt to maintain tumors in a state of quiescence, multiple anti-angiogenic agents have been developed. Although several angiogenesis inhibitors have produced enhanced clinical benefits in GBM, many of these pharmacologic agents result in transitory initial response phases followed by evasive tumor resistance. Thus, a significant need exists for the discovery of novel and effective anti-angiogenic therapies. The development of new molecular-targeted therapeutic strategies is often complicated by the complexity of angiogenic signal transduction. Due to the labyrinthine nature of these signaling pathways, increased production of other angiogenic factors may compensate for the inhibition of key vascular targets like vascular endothelial growth factor (VEGF). Such compensatory mechanisms facilitate vascularization and allow tumor growth to proceed even in the presence of anti-angiogenic agents. This review presents the challenges of targeting the intricate vascular network of GBM and discusses the clinical implications for recent advancements in targeted anti-angiogenic drug therapy.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Brain Neoplasms/pathology , Drug Delivery Systems/methods , Glioblastoma/pathology , Glioblastoma/physiopathology , Humans , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/physiopathology , Signal Transduction/drug effects , Signal Transduction/physiology
16.
Cancer Lett ; 304(2): 137-43, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21397389

ABSTRACT

In ovarian cancer, the molecular targeted chemotherapeutics could increase the efficiency of low-dose radiotherapy while decreasing injury to adjusted organs. In irradiated A2780 human ovarian carcinoma cells, cytosolic phospholipase A2 (cPLA(2)) inhibitor AACOCF(3) prevented activation of pro-survival Akt signaling and enhanced cell death. The potential molecular mechanisms of this effect could involve signaling through lysophosphatidic acid receptors. In the heterotopic A2780 tumor model using nude mice, cPLA(2) inhibition significantly delayed tumor growth compared to treatment with radiation or vehicle alone. These results identify cPLA(2) as a molecular target to enhance the therapeutic ratio of radiation in ovarian cancer.


Subject(s)
Adenocarcinoma/enzymology , Arachidonic Acids/pharmacology , Ovarian Neoplasms/enzymology , Phospholipases A2, Cytosolic/metabolism , Radiation-Sensitizing Agents/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/radiotherapy , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Combined Modality Therapy , Cytoplasm/metabolism , Enzyme Activation/drug effects , Enzyme Activation/radiation effects , Enzyme Inhibitors/pharmacology , Female , Humans , Mice , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/radiotherapy , Signal Transduction/drug effects , Signal Transduction/radiation effects , Xenograft Model Antitumor Assays
17.
J Natl Cancer Inst ; 102(18): 1398-412, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20729478

ABSTRACT

BACKGROUND: Lung cancer and glioblastoma multiforme are highly angiogenic and, despite advances in treatment, remain resistant to therapy. Cytosolic phospholipase A2 (cPLA(2)) activation contributes to treatment resistance through transduction of prosurvival signals. We investigated cPLA(2) as a novel molecular target for antiangiogenesis therapy. METHODS: Glioblastoma (GL261) and Lewis lung carcinoma (LLC) heterotopic tumor models were used to study the effects of cPLA(2) expression on tumor growth and vascularity in C57/BL6 mice wild type for (cPLA(2)α(+/+)) or deficient in (cPLA(2)α(-/-)) cPLA(2)α, the predominant isoform in endothelium (n = 6-7 mice per group). The effect of inhibiting cPLA(2) activity on GL261 and LLC tumor growth was studied in mice treated with the chemical cPLA(2) inhibitor 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1H-indol-3-yl]-ethoxy]benzoic acid (CDIBA). Endothelial cell proliferation and function were evaluated by Ki-67 immunofluorescence and migration assays in primary cultures of murine pulmonary microvascular endothelial cells (MPMEC) isolated from cPLA(2)α(+/+) and cPLA(2)α(-/-) mice. Proliferation, invasive migration, and tubule formation were assayed in mouse vascular endothelial 3B-11 cells treated with CDIBA. Effects of lysophosphatidylcholine, arachidonic acid, and lysophosphatidic acid (lipid mediators of tumorigenesis and angiogenesis) on proliferation and migration were examined in 3B-11 cells and cPLA(2)α(-/-) MPMEC. All statistical tests were two-sided. RESULTS: GL261 tumor progression proceeded normally in cPLA(2)α(+/+) mice, whereas no GL261 tumors formed in cPLA(2)α(-/-) mice. In the LLC tumor model, spontaneous tumor regression was observed in 50% of cPLA(2)α(-/-) mice. Immunohistochemical examination of the remaining tumors from cPLA(2)α(-/-) mice revealed attenuated vascularity (P ≤ .001) compared with tumors from cPLA(2)α(+/+) mice. Inhibition of cPLA(2) activity by CDIBA resulted in a delay in tumor growth (eg, LLC model: average number of days to reach tumor volume of 700 mm(3), CDIBA vs vehicle: 16.8 vs 11.8, difference = 5, 95% confidence interval = 3.6 to 6.4, P = .04) and a decrease in tumor size (eg, GL261 model: mean volume on day 21, CDIBA vs vehicle: 40.1 vs 247.4 mm(3), difference = 207.3 mm(3), 95% confidence interval = 20.9 to 293.7 mm(3), P = .021). cPLA(2) deficiency statistically significantly reduced MPMEC proliferation and invasive migration (P = .002 and P = .004, respectively). Compared with untreated cells, cPLA(2)α(-/-) MPMEC treated with lysophosphatidylcholine and lysophosphatidic acid displayed increased cell proliferation (P = .011) and invasive migration (P < .001). CONCLUSIONS: In these mouse models of brain and lung cancer, cPLA(2) and lysophospholipids have key regulatory roles in tumor angiogenesis. cPLA(2) inhibition may be a novel effective antiangiogenic therapy.


Subject(s)
Endothelial Cells/metabolism , Group IV Phospholipases A2/metabolism , Lysophospholipids/metabolism , Neoplasms/blood supply , Neoplasms/metabolism , Neovascularization, Pathologic/metabolism , Animals , Carcinoma, Lewis Lung/blood supply , Cell Movement , Cell Proliferation , Collagen , Disease Models, Animal , Drug Combinations , Glioblastoma/blood supply , Group IV Phospholipases A2/deficiency , Laminin , Mice , Necrosis , Neoplasm Invasiveness , Neovascularization, Pathologic/enzymology , Pericytes/metabolism , Proteoglycans , Pulmonary Circulation
18.
Int J Radiat Oncol Biol Phys ; 76(2): 557-65, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20117291

ABSTRACT

PURPOSE: Development of new treatments is critical to effective protection against radiation-induced injury. We investigate the potential of developing small-molecule inhibitors of glycogen synthase kinase 3beta (GSK-3beta)-SB216763 or SB415286-as radioprotective agents to attenuate intestinal injury. METHODS AND MATERIALS: A survival study was done by use of C57BL/6J mice to evaluate the radioprotective effect of GSK-3beta inhibitors. Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay and immunohistochemical staining for Bax and Bcl-2 were used to assess apoptosis in the small intestines of the treated mice. A clonogenic survival study, apoptosis assays (staining with annexin V or 4',6-diamidino-2-phenylindole), and immunoblot analysis of beta-catenin, Bcl-2, Bax, and caspase 3 were done by use of Rat intestinal epithelial cell line IEC-6 cells. RESULTS: Pretreatment with SB415286 significantly improved survival of mice irradiated with 8 and 12 Gy. Mice pretreated with SB216763 or SB415286 showed a significant reduction in TUNEL- and Bax-positive cells and an increase in Bcl-2-positive cells in intestinal crypts at 4 and/or 12 h after radiation with 4 and/or 8 Gy compared with radiation alone. Pretreatment of irradiated IEC-6 cells with GSK-3beta inhibitors significantly increased clonogenic survival compared with cells treated with radiation alone. This increase was due to the attenuation of radiation-induced apoptosis, as shown by annexin V and 4',6-diamidino-2-phenylindole assays, as well as immunoblot analysis of Bcl-2, Bax, and caspase 3. CONCLUSIONS: Glycogen synthase kinase 3beta small-molecule inhibitors protect mouse intestine from radiation-induced damage in cell culture and in vivo and improve survival of mice. Molecular mechanisms of this protection involve attenuated radiation-induced apoptosis regulated by Bcl-2, Bax, and caspase 3. Therefore GSK-3beta inhibitors reduce deleterious consequences of intestinal irradiation and thereby improve quality of life during radiation therapy.


Subject(s)
Aminophenols/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Indoles/pharmacology , Intestines/radiation effects , Maleimides/pharmacology , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/pharmacology , Animals , Apoptosis , Caspase 3/analysis , Cell Line , Cell Survival , Glycogen Synthase Kinase 3 beta , In Situ Nick-End Labeling/methods , Mice , Mice, Inbred C57BL , Radiation Injuries, Experimental/metabolism , Rats , bcl-2-Associated X Protein/analysis , beta Catenin/analysis
19.
Int J Radiat Oncol Biol Phys ; 74(5): 1573-9, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19616744

ABSTRACT

PURPOSE: To study the role of interleukin-32 (IL-32), a novel protein only detected in human tissues, in ionizing radiation (IR)-induced vascular inflammation. METHODS AND MATERIALS: Irradiated (0-6 Gy) human umbilical vein endothelial cells treated with or without various agents--a cytosolic phospholipase A2 (cPLA2) inhibitor, a cyclooxygenase-2 (Cox-2) inhibitor, or lysophosphatidylcholines (LPCs)--were used to assess IL-32 expression by Northern blot analysis and quantitative reverse transcriptase-polymerase chain reaction. Expression of cell adhesion molecules and leukocyte adhesion to endothelial cells using human acute monocytic leukemia cell line (THP-1) cells was also analyzed. RESULTS: Ionizing radiation dramatically increased IL-32 expression in vascular endothelial cells through multiple pathways. Ionizing radiation induced IL-32 expression through nuclear factor kappaB activation, through induction of cPLA2 and LPC, as well as induction of Cox-2 and subsequent conversion of arachidonic acid to prostacyclin. Conversely, blocking nuclear factor kappaB, cPLA2, and Cox-2 activity impaired IR-induced IL-32 expression. Importantly, IL-32 significantly enhanced IR-induced expression of vascular cell adhesion molecules and leukocyte adhesion on endothelial cells. CONCLUSION: This study identifies IL-32 as a positive regulator in IR-induced vascular inflammation, and neutralization of IL-32 may be beneficial in protecting from IR-induced inflammation.


Subject(s)
Endothelium, Vascular/radiation effects , Interleukins/physiology , Vasculitis/metabolism , Cell Adhesion Molecules/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Endothelium, Vascular/metabolism , Group IV Phospholipases A2/antagonists & inhibitors , Group IV Phospholipases A2/metabolism , Group IV Phospholipases A2/physiology , Humans , Interleukins/antagonists & inhibitors , Interleukins/metabolism , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/physiology , Subtilisins/antagonists & inhibitors , Subtilisins/metabolism , Umbilical Veins/metabolism , Umbilical Veins/radiation effects , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vasculitis/etiology
20.
Clin Cancer Res ; 15(5): 1635-44, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19240173

ABSTRACT

PURPOSE: In vascular endothelial cells, low doses of ionizing radiation trigger the immediate activation of cytosolic phospholipase A2 (cPLA2). This event initiates prosurvival signaling that could be responsible for radioresistance of tumor vasculature. Thus, the development of radiosensitizers targeting these survival pathways may enhance tumor response to radiation therapy. Arachidonyltrifluoromethyl Ketone (AACOCF3), a specific cPLA2 inhibitor, was studied as a potential radiosensitizer. EXPERIMENTAL DESIGN: Vascular endothelial cells (3B11 and MPMEC) and lung tumor cells (LLC and H460) were treated with 1 micromol/L AACOCF3 for 30 minutes prior to irradiation. Treatment response was evaluated by clonogenic survival, activation of extracellular signal-regulated kinase 1/2 (ERK1/2), tubule formation, and migration assays. For in vivo experiments, mice with LLC or H460 tumors in the hind limbs were treated for 5 consecutive days with 10 mg/kg AACOCF3 administered daily 30 minutes prior to irradiation. Treatment response was assessed by tumor growth delay, Power Doppler Sonography, and immunohistochemistry. RESULTS: In cell culture experiments, inhibition of cPLA2 with AACOCF3 prevented radiation-induced activation of ERK1/2 and decreased clonogenic survival of irradiated vascular endothelial cells but not the lung tumor cells. Treatment with AACOCF3 also attenuated tubule formation and migration in irradiated vascular endothelial cells. In both tumor mouse models, treatment with AACOCF3 prior to irradiation significantly suppressed tumor growth and decreased overall tumor blood flow and vascularity. Increased apoptosis in both tumor cells and tumor vascular endothelium was determined as a possible mechanism of the observed effect. CONCLUSION: These findings identify cPLA2 as a novel molecular target for tumor sensitization to radiation therapy through the tumor vasculature.


Subject(s)
Carcinoma, Large Cell/pathology , Endothelium, Vascular/drug effects , Lung Neoplasms/pathology , Phospholipases A2, Cytosolic/antagonists & inhibitors , Animals , Apoptosis/drug effects , Arachidonic Acids/pharmacology , Blood Flow Velocity , Blotting, Western , Carcinoma, Large Cell/blood supply , Carcinoma, Large Cell/enzymology , Carcinoma, Lewis Lung/blood supply , Carcinoma, Lewis Lung/enzymology , Carcinoma, Lewis Lung/pathology , Cell Movement/drug effects , Collagen/metabolism , Disease Models, Animal , Drug Combinations , Endothelium, Vascular/enzymology , Endothelium, Vascular/radiation effects , Enzyme Inhibitors/pharmacology , Laminin/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Mice , Mice, Inbred C57BL , Mice, Nude , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neovascularization, Pathologic/drug therapy , Phospholipases A2, Cytosolic/metabolism , Phosphorylation/drug effects , Proteoglycans/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Radiation Dosage , Tumor Stem Cell Assay
SELECTION OF CITATIONS
SEARCH DETAIL
...