Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 10(4): 367-84, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20402793

ABSTRACT

Despite the scientific and applied interest in the anaerobic metabolism of Saccharomyces cerevisiae, not all genes whose transcription is upregulated under anaerobic conditions have yet been linked to known transcription factors. Experiments with a reporter construct in which the promoter of the anaerobically upregulated TIR1 gene was fused to lacZ revealed a loss of anaerobic upregulation in an snf7Delta mutant. Anaerobic upregulation was restored by expression of a truncated allele of RIM101 that encodes for a constitutively active Rim101p. Analysis of lacZ expression in several deletion mutants confirmed that the effect of Snf7p on anaerobic upregulation of TIR1 involved Rim101p. Further studies with deletion mutants in NRG1, NRG2 and SMP1, which were previously shown to be regulated by Rim101p, could not totally elucidate the TIR1 regulation, suggesting the involvement of a more complex regulation network. However, the aerobic repression mechanism of TIR1 involved the general repressor Ssn6p-Tup1p. Transcriptome analysis in anaerobic chemostat cultures revealed that 26 additional genes exhibited an Snf7p/Rim101p-dependent anaerobic upregulation, among which, besides TIR1, are four other anaerobic genes SML1, MUC1, AAC3 and YBR300C. These results provide new evidence on the implication of the Rim101p cascade in the transcriptional regulation of anaerobic metabolism in S. cerevisiae.


Subject(s)
Endosomal Sorting Complexes Required for Transport/physiology , Gene Expression Regulation, Fungal , Heat-Shock Proteins/biosynthesis , Repressor Proteins/physiology , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/physiology , Transcription, Genetic , Anaerobiosis , Artificial Gene Fusion , Endosomal Sorting Complexes Required for Transport/deficiency , Gene Deletion , Gene Expression Profiling , Genes, Reporter , Saccharomyces cerevisiae/genetics , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
2.
Yeast ; 24(1): 1-10, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17192845

ABSTRACT

Life in the absence of molecular oxygen requires several adaptations. Traditionally, the switch from respiratory metabolism to fermentation has attracted much attention in Saccharomyces cerevisiae, as this is the basis for the use of this yeast in the production of alcohol and in baking. It has also been clear that under anaerobic conditions the yeast is not able to synthesize sterols and unsaturated fatty acids and that for anaerobic growth these have to be added to the media. More recently it has been found that many more factors play a role. Several other biosynthetic reactions also require molecular oxygen and the yeast must have alternatives for these. In addition, the composition of the cell wall and cell membrane show major differences when aerobic and anaerobic cells are compared. All these changes are reflected by the observation that the transcription of more than 500 genes changes significantly between aerobically and anaerobically growing cultures. In this review we will give an overview of the factors that play a role in the survival in the absence of molecular oxygen.


Subject(s)
Saccharomyces cerevisiae/growth & development , Anaerobiosis , Cell Membrane/physiology , Fermentation , Genes, Fungal , Industrial Microbiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
3.
Yeast ; 12(16): 1607-33, 1996 Dec.
Article in English | MEDLINE | ID: mdl-9123965

ABSTRACT

In yeasts, pyruvate is located at a major junction of assimilatory and dissimilatory reactions as well as at the branch-point between respiratory dissimilation of sugars and alcoholic fermentation. This review deals with the enzymology, physiological function and regulation of three key reactions occurring at the pyruvate branch-point in the yeast Saccharomyces cerevisiae: (i) the direct oxidative decarboxylation of pyruvate to acetyl-CoA, catalysed by the pyruvate dehydrogenase complex, (ii) decarboxylation of pyruvate to acetaldehyde, catalysed by pyruvate decarboxylase, and (iii) the anaplerotic carboxylation of pyruvate to oxaloacetate, catalysed by pyruvate carboxylase. Special attention is devoted to physiological studies on S. cerevisiae strains in which structural genes encoding these key enzymes have been inactivated by gene disruption.


Subject(s)
Pyruvic Acid/metabolism , Saccharomyces cerevisiae/metabolism , Acetaldehyde/metabolism , Acetyl Coenzyme A/metabolism , Decarboxylation , Molecular Sequence Data , Oxaloacetates/metabolism , Pyruvate Dehydrogenase Complex/genetics , Saccharomyces cerevisiae/enzymology
4.
Curr Genet ; 26(3): 198-207, 1994 Sep.
Article in English | MEDLINE | ID: mdl-7859301

ABSTRACT

The KlCPF1 gene, coding for the centromere and promoter factor CPF1 from Kluyveromyces lactis, has been cloned by functional complementation of the methionine auxotrophic phenotype of a Saccharomyces cerevisiae mutant lacking ScCPF1. The amino-acid sequences of both CPF1 proteins show a relatively-low overall identity (31%), but a highly-homologous C-terminal domain (86%). This region constitutes the DNA-binding domain with basic-helix-loop-helix and leucine-zipper motifs, features common to the myc-related transcription factor family. The N-terminal two-thirds of the CPF1 proteins show no significant similarity, although the presence of acidic regions is a shared feature. In KlCPF1, the acidic region is a prominent stretch of approximately 40 consecutive aspartate and glutamate residues, suggesting that this part might be involved in transcriptional activation. In-vitro mobility-shift experiments were used to establish that both CPF1 proteins bind to the consensus binding site RTCACRTG (CDEI element). In contrast to S. cerevisiae, CPF1 gene-disruption is lethal in K. lactis. The homologous CPF1 genes were transformed to both S. cerevisiae and K. lactis cpf1-null strains. Indistinguishable phenotypes were observed, indicating that, not withstanding the long nonconserved N-terminal region, the proteins are sufficiently homologous to overcome the phenotypes associated with cpf1 gene-disruption.


Subject(s)
Centromere , Gene Expression Regulation, Fungal , Kluyveromyces/genetics , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , Consensus Sequence , DNA-Binding Proteins/metabolism , Genes, Fungal , Genetic Complementation Test , Molecular Sequence Data , Sequence Homology, Amino Acid
5.
Genetics ; 108(1): 67-90, 1984 Sep.
Article in English | MEDLINE | ID: mdl-6383953

ABSTRACT

A method was developed for isolating large numbers of mutations on chromosome I of the yeast Saccharomyces cerevisiae. A strain monosomic for chromosome I (i.e., haploid for chromosome I and diploid for all other chromosomes) was mutagenized with either ethyl methanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine and screened for temperature-sensitive (Ts-) mutants capable of growth on rich, glucose-containing medium at 25 degrees but not at 37 degrees. Recessive mutations induced on chromosome I are expressed whereas those on the diploid chromosomes are usually not expressed because of the presence of wild-type alleles on the homologous chromosomes. Dominant ts mutations on all chromosomes should also be expressed, but these appeared rarely.--Of the 41 ts mutations analyzed, 32 mapped on chromosome I. These 32 mutations fell into only three complementation groups, which proved to be the previously described genes CDC15, CDC24 and PYK1 (or CDC19). We recovered 16 or 17 independent mutations in CDC15, 12 independent mutations in CDC24 and three independent mutations in PYK1. A fourth gene on chromosome I, MAK16, is known to be capable of giving rise to a ts-lethal allele, but we recovered no mutations in this gene. The remaining nine mutations isolated using the monosomic strain appeared not to map on chromosome I and were apparently expressed in the original mutants because they had become homozygous or hemizygous by mitotic recombination or chromosome loss.--The available information about the size of chromosome I suggests that it should contain approximately 60-100 genes. However, our isolation in the monosomic strain of multiple, independent alleles of just three genes suggests that only a small proportion of the genes on chromosome I is easily mutable to give a Ts--lethal phenotype.--During these studies, we located CDC24 on chromosome I and determined that it is centromere distal to PYK1 on the left arm of the chromosome.


Subject(s)
Genes, Fungal , Genes, Lethal , Saccharomyces cerevisiae/genetics , Chromosome Mapping , Chromosomes/physiology , Crosses, Genetic , Diploidy , Ethyl Methanesulfonate/pharmacology , Genetic Complementation Test , Genotype , Haploidy , Methylnitronitrosoguanidine/pharmacology , Saccharomyces cerevisiae/drug effects , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...