Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Surg ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884274

ABSTRACT

OBJECTIVES: Exploring the efficacy of an artificial intelligence (AI) model derived from the analysis of CT images to precisely forecast the therapeutic outcomes of singular-session extracorporeal shock wave lithotripsy (ESWL) in the management of ureteral stones. METHODS: A total of 317 patients diagnosed clinically with ureteral stones were included in this investigation. Unenhanced CT was administered to the participants within the initial fortnight preceding the inaugural ESWL. The internal cohort consisted of 250 individuals from a local healthcare facility, whereas the external cohort comprised 67 participants from another local medical institution. The proposed framework comprises three main components: an automated semantic segmentation model developed using 3D U-Net, a feature extractor that integrates radiomics and autoencoder techniques, and an ESWL efficacy prediction model trained with various machine learning algorithms. All participants underwent thorough postoperative follow-up examinations four weeks hence. The efficacy of ESWL was defined by the absence of stones or residual fragments measuring ≤2 mm in KUB X-ray assessments. Model stability and generalizability were judiciously validated through a fivefold cross-validation approach and a multi-center external test strategy. Moreover, Shapley Additive Explanations (SHAP) values for individual features were computed to elucidate the nuanced contributions of each feature to the model's decision-making process. RESULTS: The semantic segmentation model we constructed exhibited an average Dice coefficient of 0.88 ± 0.08 on the external testing set. ESWL classifiers built using Support Vector Machine (SVM), Random Forest (RF), XGBoost (XB), and CatBoost (CB) achieved AUROC values of 0.78, 0.84, 0.85, and 0.90, respectively, on the internal validation set. For the external testing set, SVM, RF, XB, and CB predicted ESWL with AUROC values of 0.68, 0.79, 0.80, and 0.83, respectively, with the last one being the optimal algorithm. The radiomics features and auto-encoder features made significant contributions to the decision-making process of the classification model. CONCLUSIONS: This investigation unmistakably underscores the remarkable predictive prowess exhibited by a scrupulously crafted AI model using CT images to precisely anticipate the therapeutic results of a singular session of extracorporeal shock wave lithotripsy for ureteral stones.

2.
Quant Imaging Med Surg ; 13(10): 7105-7116, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37869322

ABSTRACT

Background: Placenta accreta spectrum (PAS) is a significant contributor to maternal morbidity and mortality. Our objective was to develop a quantitative analysis framework utilizing magnetic resonance imaging (MRI)-anatomical-clinical features to predict 3 clinically significant parameters in patients with PAS: placenta subtype (invasive vs. non-invasive placenta), intraoperative bleeding (≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. non-hysterectomy). Methods: A total of 125 pregnant women with PAS from 2 medical centers were enrolled into an internal training set and an external testing set. Some 21 MRI-anatomical-clinical features were integrated as input into the framework. The proposed quantitative analytic framework contains mainly 3 classifiers built by extreme gradient boosting (XGBoost) and their testing in external datasets. We also further compared the accuracy of placenta subtype prediction between the proposed model and 4 radiologists. A quantitative model interpretation method called SHapley Additive exPlanations (SHAP) was conducted to explore the contribution of each feature. Results: The placenta subtype (invasive vs. non-invasive), intraoperative bleeding (≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. non-hysterectomy) demonstrated impressive area under the receiver operating characteristic curve (AUROC) values of 0.93, 0.88, and 0.90, respectively, in the internal validation set. Even in the external testing set, these metrics maintained their strength, achieving AUROC values of 0.91, 0.82, and 0.82, respectively. Comparing our proposed framework to the 4 radiologists, our model exhibited superior accuracy, specificity, and sensitivity in predicting placental subtypes within the external testing cohort. The features associated with intraplacental dark T2 bands played a crucial role in the decision-making process of all 3 prediction models. Conclusions: The quantitative analysis framework can provide a robust method for classification of placenta subtype (invasive vs. non-invasive placenta), intraoperative bleeding (≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. non-hysterectomy) based on MRI-anatomical-clinical features in PAS.

SELECTION OF CITATIONS
SEARCH DETAIL
...