Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38662092

ABSTRACT

This study aims to investigate the altered patterns of dynamic functional network connectivity (dFNC) between deficit schizophrenia (DS) and non-deficit schizophrenia (NDS), and further explore the associations with cognitive impairments. 70 DS, 91 NDS, and 120 matched healthy controls (HCs) were enrolled. The independent component analysis was used to segment the whole brain. The fMRI brain atlas was used to identify functional networks, and the dynamic functional connectivity (FC) of each network was detected. Correlation analysis was used to explore the associations between altered dFNC and cognitive functions. Four dynamic states were identified. Compared to NDS, DS showed increased FC between sensorimotor network and default mode network in state 1 and decreased FC within auditory network in state 4. Additionally, DS had a longer mean dwell time of state 2 and a shorter one in state 3 compared to NDS. Correlation analysis showed that fraction time and mean dwell time of states were correlated with cognitive impairments in DS. This study demonstrates the distinctive altered patterns of dFNC between DS and NDS patients. The associations with impaired cognition provide specific neuroimaging evidence for the pathogenesis of DS.

2.
Nat Commun ; 13(1): 6593, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329034

ABSTRACT

Strongly correlated materials often exhibit an electronic phase separation (EPS) phenomena whose domain pattern is random in nature. The ability to control the spatial arrangement of the electronic phases at microscopic scales is highly desirable for tailoring their macroscopic properties and/or designing novel electronic devices. Here we report the formation of EPS nanoscale network in a mono-atomically stacked LaMnO3/CaMnO3/PrMnO3 superlattice grown on SrTiO3 (STO) (001) substrate, which is known to have an antiferromagnetic (AFM) insulating ground state. The EPS nano-network is a consequence of an internal strain relaxation triggered by the structural domain formation of the underlying STO substrate at low temperatures. The same nanoscale network pattern can be reproduced upon temperature cycling allowing us to employ different local imaging techniques to directly compare the magnetic and transport state of a single EPS domain. Our results confirm the one-to-one correspondence between ferromagnetic (AFM) to metallic (insulating) state in manganite. It also represents a significant step in a paradigm shift from passively characterizing EPS in strongly correlated systems to actively engaging in its manipulation.

3.
Rev Sci Instrum ; 92(11): 113906, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34852506

ABSTRACT

Oxide superlattices often exhibit emergent physical properties that are desirable for future information device applications. The most common growth technique for fabrication of oxide superlattices is pulsed laser deposition (PLD), which is convenient yet powerful for the growth of various oxide superlattices. However, the sample size prepared by PLD is rather small confined by the plasmon plume, which greatly limits its potential for device applications. Here, we design a PLD system that is capable of fabricating large-sized oxide superlattices with high uniformity. Specifically, during growth, the laser beam scans the target surface by combining the pitch and yaw angle rotation of the high reflective mirror and the linear motion of the focus lens. A SiC susceptor is placed in between the sample holder and the substrate to improve the large area infrared heating efficiency. Using such a system, droplet-free 10 × 10 mm2 [(LSMO)12/(PCMO)6]7 superlattices are epitaxially grown with the same period of superlattices across the whole sample areas. The high uniformity of the superlattices is further illustrated by near identical physical properties of all regions of the superlattice films. The present PLD system can be used to grow various kinds of oxide superlattices with the area size as large as 2 in., which is highly useful for device applications of oxides.

4.
Ecotoxicol Environ Saf ; 167: 1-9, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30292970

ABSTRACT

Humic acid (HA) has a major influence on the environmental fate of metal ions due to its heterogeneity in chemical compositions, structure and functional groups. In this study, we investigated the effect of humic acid (HA) with different molecular weight (Mw) on the bioavailability of Pb for a representative algae-Chlorella pyrenoidosa. The results showed that HA with larger Mw had stronger inhibitory effects on the bioavailability of Pb to algae, and the biosorption capacity of Pb decreased with increasing Mw, which is in accordance with the variations of complexation capacities of Pb for HA fraction. In addition, we found that HA with Mw lower than 10 kDa could increase the biosorption capacity of Pb. The considerable differences among the Mw fractions on Pb biosorption were mainly attributed to their properties and corresponding complexation capacities. Phenolic groups were responsible for the variations of binding capacities among different Mw fractions, and it could also better explain the bioaccumulation of Pb to the membranes of algae. By using NICA-Donnan model, we found that over 60% of Pb ions were bound by HAs through specific binding, and the formation of Pb-HAs complex were non-bioavailable to algae, which was proved by the considerably decreasing percentage of internalized Pb. This study provided further insight into the bioavailability of Pb to algae as influenced by the complexation of HA with metal ion such as Pb.


Subject(s)
Chlorella/metabolism , Humic Substances/analysis , Lead/pharmacokinetics , Adsorption , Binding Sites , Biological Availability , Chemical Phenomena , Models, Theoretical , Molecular Weight
5.
J Environ Sci (China) ; 70: 154-165, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30037402

ABSTRACT

Molecular weight (Mw) is a fundamental property of humic acids (HAs), which considerably affect the mobility and speciation of heavy metals in the environment. In this study, soil humic acid (HA) extracted from Jinyun Mountain, Chongqing was ultra-filtered into four fractions according to the molecular weight, and their properties were characterized. Complexation of cadmium was investigated by titration experiments. For the first time, Langmuir and non-ideal competitive adsorption-Donna (NICA-Donnan) models combined with fluorescence excitation-emission matrix (EEM) quenching were employed to elucidate the binding characteristics of individual Mw fractions of HA. The results showed that the concentration of acidic functional groups decreased with increasing Mw, especially the phenolic groups. The humification degree and aliphaticity increased with increasing Mw as indicated by elemental composition analysis and FT-IR spectra. The binding capacity of Cd2+ to Mw fractions of HA followed the order UF1 (<5kDa)>UF2 (5-10kDa)>UF4 (>30kDa)>UF3 (10-30kDa). Moreover, the distribution of cadmium speciation indicated that the phenolic groups were responsible for the variations in binding of Cd2+ among different Mw fractions. The results of fluorescence quenching illustrated that the binding capacity of Cd2+ to Mw fractions was controlled by the content of functional groups, while the binding affinity was largely influenced by structural factors. The results provide a better understanding of the roles that different HA Mw fractions play in heavy metal binding, which has important implications in the control of heavy metal migration and bio-toxicity.


Subject(s)
Cadmium/chemistry , Humic Substances/analysis , Models, Chemical , Soil Pollutants/analysis , Soil/chemistry , Adsorption , Molecular Weight , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...