Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 250: 121024, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113597

ABSTRACT

Benzethonium chloride (BZC) is viewed as a promising disinfectant and widely applied in daily life. While studies related to its effect on waste activated sludge (WAS) anaerobic fermentation (AF) were seldom mentioned before. To understand how BZC affects AF of WAS, production of short chain fatty acids (SCFAs), characteristics of WAS as well as microbial community were evaluated during AF. Results manifested a dose-specific relationship of dosages between BZC and SCFAs and the optimum yield arrived at 2441.01 mg COD/L with the addition of 0.030 g/g TSS BZC. Spectral results and protein secondary structure variation indicated that BZC denatured proteins in the solid phase into smaller proteins or amino acids with unstable structures. It was also found that BZC could stimulate the extracellular polymeric substances secretion and reduce the surface tension of WAS, leading to the enhancement of solubilization. Beside, BZC promoted the hydrolysis stage (increased by 7.09 % to 0.030 g/g TSS BZC), but inhibited acetogenesis and methanogenesis stages (decreased by 6.85 % and 14.75 % to 0.030 g/g TSS BZC). The microbial community was also regulated by BZC to facilitate the enrichment of hydrolytic and acidizing microorganisms (i.e. Firmicutes). All these variations caused by BZC were conducive to the accumulation of SCFAs. The findings contributed to investigating the effect of BZC on AF of WAS and provided a new idea for the future study of AF mechanism.


Subject(s)
Benzethonium , Sewage , Fermentation , Anaerobiosis , Sewage/chemistry , Fatty Acids, Volatile , Hydrogen-Ion Concentration
2.
Sci Total Environ ; 900: 165774, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37499831

ABSTRACT

A variety of variables limit the recovery of resources from anaerobic fermentation of waste activated sludge (WAS), hence pretreatment strategies are necessary to be investigated to increase its efficiency. A combination of free nitrous acid (FNA) and calcium hypochlorite [Ca(ClO)2] was employed in this investigation to significantly improve sludge fermentation performance. The yields of cumulative hydrogen for the blank and FNA treatment group were 1.09 ± 0.16 and 7.36 ± 0.21 mL/g VSS, respectively, and 6.59 ± 0.24 [0.03 g Ca(ClO)2/g TSS], 7.75 ± 0.20 (0.06), and 8.58 ± 0.22 (0.09) mL/g VSS for the Ca(ClO)2 groups. The co-treatment greatly boosted hydrogen generation, ranging from 39.97 ± 2.26 to 76.20 ± 4.78 % as compared to the solo treatment. Mechanism analysis demonstrated that the combined treatment disturbed sludge structure and cell membrane permeability even more, which released more organic substrates and enhanced biodegradability of fermentation broth. This paper describes a unique strategy to sludge pretreatment that expands the use of Ca(ClO)2 and FNA in anaerobic fermentation, with implications for sludge disposal and energy recovery.


Subject(s)
Nitrous Acid , Sewage , Sewage/chemistry , Nitrous Acid/analysis , Fatty Acids, Volatile/analysis , Fermentation , Hydrogen/analysis , Anaerobiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...