Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biotechnol Biofuels Bioprod ; 17(1): 82, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886801

ABSTRACT

BACKGROUND: 5-Aminolevulinic acid (ALA) recently received much attention due to its potential application in many fields such as medicine, nutrition and agriculture. Metabolic engineering is an efficient strategy to improve microbial production of 5-ALA. RESULTS: In this study, an ALA production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement. A metabolic strategy to produce ALA directly from glucose in this recombinant E. coli via both C4 and C5 pathways was applied herein. The expression of a modified hemARS gene and rational metabolic engineering by gene knockouts significantly improved ALA production from 765.9 to 2056.1 mg/L. Next, we tried to improve ALA production by RGMS-directed evolution of eamA gene. After RGMS, the ALA yield of strain A2-ASK reached 2471.3 mg/L in flask. Then, we aimed to improve the oxidation resistance of cells by overexpressing sodB and katE genes and ALA yield reached 2703.8 mg/L. A final attempt is to replace original promoter of hemB gene in genome with a weaker one to decrease its expression. After 24 h cultivation, a high ALA yield of 19.02 g/L was achieved by 108-ASK in a 5 L fermenter. CONCLUSIONS: These results suggested that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification and optimization of gene expression.

2.
J Nutr Biochem ; 111: 109176, 2023 01.
Article in English | MEDLINE | ID: mdl-36220527

ABSTRACT

One-carbon metabolism is a key metabolic network that integrates nutritional signals with embryonic development. However, the response of one-carbon metabolism to methionine status and the regulatory mechanisms are poorly understood. Herein, we found that methionine supplementation during pregnancy significantly increased fetal number and average fetal weight. In addition, methionine modulated one-carbon metabolism primarily through 2 metabolic enzymes, cystathionine ß-synthase (CBS) and methionine adenosyltransferase 2A (MAT2A), which were significantly increased in fetal liver tissues and porcine trophoblast (pTr) cells in response to proper methionine supplementation. CBS and MAT2A overexpression enhanced the DNA synthesis in pTr cells. More importantly, we identified a transcription factor, DNA damage-inducible transcript 3 (DDIT3), that was the primary regulator of CBS and MAT2A, which bound directly to promoters and negatively regulated the expression of CBS and MAT2A. Taken together, our findings identified that DDIT3 targeting CBS and MAT2A was a novel regulatory pathway that mediated cellular one-carbon metabolism in response to methionine signal and provided promising targets to improve pregnancy health.


Subject(s)
Methionine Adenosyltransferase , Methionine , Swine , Animals , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Embryonic Development , Promoter Regions, Genetic , Racemethionine , Carbon
3.
J Biol Eng ; 16(1): 26, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36229878

ABSTRACT

BACKGROUND: 5-Aminolevulinic acid (ALA) recently received much attention due to its potential application in many fields. In this study, an ALA production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement based on known regulatory and metabolic information and CRISPR/Cas9 mediated gene knockout. RESULTS: A metabolic strategy to produce ALA directly from glucose in this recombinant E. coli via the C5 pathway was applied herein. The rational metabolic engineering by gene knockouts significantly improved ALA production from 662.3 to 1601.7 mg/L. In addition, we managed to synergistically produce ALA via the C4 pathway in recombinant strain. The expression of a modified hemA gene, encoding an ALA synthase from Rhodobacter sphaeroides, improved ALA production from 1601.7 to 2099.7 mg/L. After 24 h cultivation, a yield of 0.210 g ALA per g glucose was achieved by constructed E. coli D5:FYABD-RSA. CONCLUSION: Our study revealed that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification and optimization of gene expression.

4.
J Biol Eng ; 15(1): 22, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34384456

ABSTRACT

T7 Expression System is a common method of ensuring tight control and high-level induced expression. However, this system can only work in some bacterial strains in which the T7 RNA Polymerase gene resides in the chromosome. In this study, we successfully introduced a chromosomal copy of the T7 RNA Polymerase gene under control of the lacUV5 promoter into Escherichia coli BW25113. The T7 Expression System worked efficiently in this mutant strain named BW25113-T7. We demonstrated that this mutant strain could satisfactorily produce 5-Aminolevulinic Acid via C5 pathway. A final study was designed to enhance the controllability of T7 Expression System in this mutant strain by constructing a T7 Promoter Variants Library. These efforts advanced E. coli BW25113-T7 to be a practical host for future metabolic engineering efforts.

5.
Oxid Med Cell Longev ; 2021: 6655685, 2021.
Article in English | MEDLINE | ID: mdl-33953835

ABSTRACT

METHODS AND RESULTS: Herein, a comprehensive proteomic analysis was conducted on proliferative endometria from sows with low and normal reproductive performance (LRP and NRP, respectively). Enrichment analysis of differentially expressed proteins revealed alterations in endometrial remodeling, substance metabolism (mainly lipid, nitrogen, and retinol metabolism), immunological modulation, and insulin signaling in LRP sows. Importantly, aberrant lipid metabolite accumulation and dysregulation of insulin signaling were coincidently confirmed in endometria of LPR sows, proving an impaired insulin sensitivity. Furthermore, established high-fat diet- (HFD-) induced insulin-resistant mouse models revealed that uterine insulin resistance beginning before pregnancy deteriorated uterine receptivity and decreased implantation sites and fetal numbers. Mitochondrial biogenesis and fusion were decreased, and reactive oxygen species was overproduced in uteri from the HFD group during the implantation period. Ishikawa and JAR cells directly demonstrated that oxidative stress compromised implantation in vitro. CONCLUSIONS: This study demonstrated that uterine insulin sensitivity impairment beginning before pregnancy resulted in implantation and fetal loss associated with oxidative stress induced by mitochondrial dysfunction.


Subject(s)
Embryo Implantation/physiology , Insulin/metabolism , Mitochondria/metabolism , Oxidative Stress/physiology , Uterus/metabolism , Animals , Female , Mice , Pregnancy
6.
FASEB J ; 35(2): e21316, 2021 02.
Article in English | MEDLINE | ID: mdl-33433947

ABSTRACT

Maintaining ovarian steroidogenesis is of critical importance, considering that steroid hormones are required for successful establishment and maintenance of pregnancy and proper development of embryos and fetuses. Investigating the mechanism that butyrate modulates the ovarian steroidogenesis is beneficial for understanding the impact of lipid nutrition on steroidogenesis. Herein, we identified that butyrate improved estradiol and progesterone synthesis in rat primary ovarian granulosa cells and human granulosa KGN cells and discovered the related mechanism. Our data indicated that butyrate was sensed by GPR41 and GPR43 in ovarian granulosa cells. Butyrate primarily upregulated the acetylation of histone H3K9 (H3K9ac). Chromatin immune-precipitation and sequencing (ChIP-seq) data of H3K9ac revealed the influenced pathways involving in the mitochondrial function (including cellular metabolism and steroidogenesis) and cellular antioxidant capacity. Additionally, increasing H3K9ac by butyrate further stimulated the PPARγ/CD36/StAR pathways to increase ovarian steroidogenesis and activated PGC1α to enhance mitochondrial dynamics and alleviate oxidative damage. The improvement in antioxidant capacity and mitochondrial dynamics by butyrate enhanced ovarian steroidogenesis. Collectively, butyrate triggers histone H3K9ac to activate steroidogenesis through PPARγ and PGC1α pathways in ovarian granulosa cells.


Subject(s)
Butyrates/pharmacology , Granulosa Cells/metabolism , Histones/metabolism , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Acetylation/drug effects , Animals , Cell Survival/drug effects , Chromatin Immunoprecipitation , Female , Granulosa Cells/drug effects , Histones/drug effects , Humans , Immunoblotting , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Polymerase Chain Reaction , Rats , Reactive Oxygen Species/metabolism
7.
Cell Prolif ; 54(1): e12950, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33179842

ABSTRACT

OBJECTIVES: Early pregnancy loss is a major clinical concern in animal and human reproduction, which is largely influenced by embryo implantation. The importance of methionine for embryo implantation is widely neglected. MATERIALS AND METHODS: We performed a series of experiments with primiparous rats fed diets containing different levels of methionine during early pregnancy to investigate the role of methionine in embryonic implantation and pregnancy outcomes, and used them to perform in vivo metabolic assessments and in vitro uterine explant culture. In addition, through transcriptome analysis and silencing the expression of cystathionine ß-synthase (CBS, the key enzyme in transsulfuration pathway) and cell adhesion assay, we measured signalling within Ishikawa, pTr and JAR cells. RESULTS: We determined the relevance and underlying mechanism of methionine on embryo implantation. We showed that methionine deprivation sharply decreased embryo implantation sites, expression of CBS and transsulfuration pathway end products, which were reversed by maternal methionine supplementation during early pregnancy. Moreover, we found CBS improved methionine-mediated cell proliferation and DNA synthesis by CBS inhibition or interference. In addition, transcriptome analysis also revealed that CBS influenced the signalling pathway-associated cell proliferation and DNA synthesis, as well as a correlation between CBS and methionine adenosyltransferase 2A (MAT2A), implying that MAT2A was possibly involved in cell proliferation and DNA synthesis. Further analysis revealed that MAT2A influenced S-adenosylmethionine receptor SAMTOR expression, and SAMTOR activated mTORC1 and its downstream S6K1 and CAD, ultimately enhancing DNA synthesis in the embryo and uterus. CONCLUSIONS: Taken together, these studies demonstrate that CBS and MAT2A improve methionine-mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation.


Subject(s)
Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cystathionine beta-Synthase/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Methionine Adenosyltransferase/metabolism , Methionine/metabolism , Ribosomal Protein S6 Kinases/metabolism , Animals , Cells, Cultured , DNA/biosynthesis , Female , Humans , Methionine/analogs & derivatives , Rats , Rats, Sprague-Dawley
8.
J Nutr Biochem ; 69: 98-107, 2019 07.
Article in English | MEDLINE | ID: mdl-31063920

ABSTRACT

Exploring strategies to prevent miscarriage in women or early pregnancy loss in mammals is of great importance. Manipulating maternal lipid metabolism to maintain sufficient progesterone level is an effective way. To investigated the embryo loss and progesterone synthesis impacts of short and medium chain fatty acids on the lipid metabolism, pregnancy outcome and embryo implantation were investigated in rats fed the pregnancy diets supplemented without or with 0.1% sodium butyrate (SB), 0.1% sodium hexanoate (SH), or 0.1% sodium caprylate (SC) during the entire pregnancy and early pregnancy, respectively, followed with evaluation of potential mechanisms. Maternal SB, SH, or SC supply significantly improved live litter size and embryo implantation in rats. Serum progesterone, arachidonic acid, and phospholipid metabolites levels were significantly increased in response to maternal SB, SH, and SC supply. The expression of key genes involved in ovarian steroidogenesis and granulosa cell luteinization were elevated in ovaries and primary cultured granulosa cells, including cluster of differentiation 36 (CD36), steroidogenic acute regulatory protein (StAR), and cholesterol side-chain cleavage enzyme (CYP11A1). Additionally, the expression of lysophosphatidic acid receptor 3 (LPA3) and cyclooxygenase-2 (COX2) related with phospholipid metabolism were enhanced in uterus in vivo and in in vitro cultured uterine tissue. In conclusion, maternal SB, SH and SC supply reduced early pregnancy loss through modulating maternal phospholipid metabolism and ovarian progesterone synthesis in rats. Our results have important implications that short or medium chain fatty acids have the potential to prevent miscarriage in women or early pregnancy loss in mammals.


Subject(s)
Butyric Acid/pharmacology , Caproates/pharmacology , Caprylates/pharmacology , Maternal Nutritional Physiological Phenomena , Progesterone/biosynthesis , Abortion, Spontaneous/prevention & control , Animals , Dietary Supplements , Embryo Implantation/drug effects , Embryo Implantation/physiology , Fatty Acids/blood , Female , Gene Expression Regulation, Developmental/drug effects , Ovary/drug effects , Ovary/metabolism , Phospholipids/genetics , Phospholipids/metabolism , Pregnancy , Pregnancy Outcome , Rats, Sprague-Dawley
9.
J Proteomics ; 200: 134-143, 2019 05 30.
Article in English | MEDLINE | ID: mdl-30951908

ABSTRACT

Oocyte quality is closely related to female fertility. Nevertheless, core nutritional metabolites influencing oocyte quality are unclear. Herein, comprehensive metabolomics analysis of follicular fluid, serum, and urine from low reproductive performance (LRP) and normal reproductive performance (NRP) sows was conducted. Twenty-seven, fourteen and sixteen metabolites (involved in metabolism of amino acids, fatty acids, purine and pyrimidine) were altered in follicular fluid, serum and urine, respectively, in LRP compared with NRP sows, and could decrease oocyte quality and developmental potential, ultimately leading to low fertility. Deoxyinosine, guanidine acetate, thymidine, 5,6-epoxy-eicosatrienoic acid, carnosine, docosahexaenoic acid and carbamoyl phosphate in follicular fluid, cysteine, carnitine, serotonin, hypoxanthine, valine and arginine in serum, as well as carnitine, phenyl glycine, N-acetyl glutamine, propionyl carnitine and choline in urine could be selected as diagnostic markers to indicate oocyte quality. Consistent with metabolomics data, we confirmed changes in concentrations of fatty acids and amino acids in follicular fluid. Targeting purine metabolism, elevating levels of deoxyinosine in in-vitro maturation medium of porcine oocyte significantly promoted the blastocyst rate. Collectively, this study provided new information of potential targets for predicting oocyte quality and developmental potential, and may help with strategies for early diagnosis or therapeutic/dietary intervention in improving reproductive outcomes.


Subject(s)
Amino Acids , Fatty Acids , Metabolic Diseases , Oocytes/metabolism , Purines , Swine Diseases , Swine , Amino Acids/blood , Amino Acids/urine , Animals , Fatty Acids/blood , Fatty Acids/urine , Female , Metabolic Diseases/blood , Metabolic Diseases/urine , Purines/blood , Purines/urine , Swine/blood , Swine/urine , Swine Diseases/blood , Swine Diseases/urine
10.
J Agric Food Chem ; 66(23): 5845-5852, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29804448

ABSTRACT

Reducing pregnancy loss is important for improving reproductive efficiency for both human and mammalian animals. Our previous study demonstrates that maternal N-carbamylglutamate (NCG) supply during early pregnancy enhances embryonic survival in gilts. However, whether maternal NCG supply improves the pregnancy outcomes is still not known. Here we found maternal NCG supply during early pregnancy in sows significantly increased the numbers of total piglets born alive per litter ( P < 0.05) and significantly changed the levels of metabolites in amniotic fluid and serum involved in metabolism of energy, lipid, and glutathione and immunological regulation. The expression of endometrial progesterone receptor membrane component 1 (PGRMC1) was significantly increased by NCG supplementation ( P < 0.05) as well as the expression of PGRMC1, endothelial nitric oxide synthesases (eNOS), and lamin A/C in fetuses and placentae ( P < 0.05). Among the NCG-associated amino acids, arginine and glutamine, markedly increased PGRMC1 and eNOS expression in porcine trophectoderm cells ( P < 0.05), whereas glutamate could stimulate the expression of vimentin and lamin A/C in porcine trophectoderm (pTr) cells ( P < 0.05) and proline stimulated lamin A/C expression ( P < 0.05). Collectively, these data reveal the mechanisms of NCG in reducing early embryo loss. These findings have important implications that NCG has great potential to improve pregnancy outcomes in human and mammalian animals.


Subject(s)
Glutamates/administration & dosage , Pregnancy Outcome , Sus scrofa/physiology , Amniotic Fluid/chemistry , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Dietary Supplements , Energy Metabolism/physiology , Female , Gene Expression/drug effects , Maternal Nutritional Physiological Phenomena , Nitric Oxide Synthase Type III/genetics , Pregnancy , Receptors, Progesterone/genetics
11.
J Agric Food Chem ; 65(28): 5751-5758, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28640602

ABSTRACT

The aim of this study was to investigate whether dietary N-carbamylglutamate (NCG) supplementation in a reduced protein diet affected carcass traits and meat quality in finishing pigs. A total of 120 gilts were randomly assigned to one of four treatments for 40 days, including a standard protein diet (SP), a reduced protein diet supplemented with 1.7% l-alanine (RP + Ala), a reduced protein diet supplemented with 1.0% l-arginine (RP + Arg), and a reduced protein diet supplemented with 0.1% NCG and 1.7% l-alanine (RP + NCG). NCG supplementation increased the endogenous synthesis of l-arginine. The RP + NCG diet significantly increased the loin eye area (p < 0.05) and tended to decrease the 10th rib fat depth (p = 0.08). NCG supplementation in a reduced protein diet was effective to produce functional pork with a high content of leucine (p < 0.05). The composition of several ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) but not the ratio of ω-6/ω-3 PUFAs in muscles was altered in finishing pigs with dietary NCG supplementation. In conclusion, the RP + NCG diet is effective to increase the longissimus dorsi muscle area, decrease back fat accretion, and produce functional pork with a high content of leucine but without a negative impact on the muscle fatty acid profile in finishing pigs.


Subject(s)
Amino Acids/metabolism , Animal Feed/analysis , Diet, Protein-Restricted/veterinary , Dietary Supplements/analysis , Glutamates/administration & dosage , Meat/analysis , Muscles/metabolism , Swine/metabolism , Amino Acids/chemistry , Animals , Arginine/metabolism , Glutamates/metabolism , Leucine/metabolism , Muscles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...