Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1154232, 2023.
Article in English | MEDLINE | ID: mdl-37152132

ABSTRACT

Stem respiration (R s) plays a vital role in ecosystem carbon cycling. However, the measured efflux on the stem surface (E s) is not always in situ R s but only part of it. A previously proposed mass balance framework (MBF) attempted to explore the multiple partitioning pathways of R s, including sap-flow-transported and internal storage of R s, in addition to E s. This study proposed stem photosynthesis as an additional partitioning pathway to the MBF. Correspondingly, a double-chamber apparatus was designed and applied on newly sprouted Moso bamboo (Phyllostachys edulis) in leafless and leaved stages. R s of newly sprouted bamboo were twice as high in the leafless stage (7.41 ± 2.66 µmol m-2 s-1) than in the leaved stage (3.47 ± 2.43 µmol m-2 s-1). E s accounted for ~80% of R s, while sap flow may take away ~2% of R s in both leafless and leaved stages. Culm photosynthesis accounted for ~9% and 13% of R s, respectively. Carbon sequestration from culm photosynthesis accounted for approximately 2% of the aboveground bamboo biomass in the leafless stage. High culm photosynthesis but low sap flow during the leafless stage and vice versa during the leaved stage make bamboo an outstanding choice for exploring the MBF.

2.
Front Plant Sci ; 11: 550, 2020.
Article in English | MEDLINE | ID: mdl-32457783

ABSTRACT

As the most widely distributed giant running bamboo species in China, Moso bamboo (Phyllostachys edulis) can accomplish both development of newly sprouted culms and leaf renewal of odd-year-old culms within a few months in spring. The two phenological events in spring may together change water distribution among culms in different age categories within a stand, which may differ from our conventional understanding of the negative age effect on bamboo water use. Therefore, to explore the effect of spring shooting and leaf phenology on age-specific water use of Moso bamboo and potential water redistribution, we monitored water use of four culm age categories (newly sprouted, 1-, 2-, and 3-year-old; namely A0, A1, A2, A3) in spring from March to June 2018. For newly sprouting culms, the spring phenological period was classified into five stages (incubation, culm-elongation, branch-development, leafing, established). Over these phenological stages, age-specific accumulated sap flux density showed different patterns. The oldest culms, A3, were not influenced by leaf renewal and kept nearly constant and less water use than the other aged culms. However, A2, which did not renew their leaves, had the most water use at the two initial stages (incubation, culm-elongation) but consumed less water than A0 and A1 after the fourth stage (leafing). At the end of June, water use of the four age categories sorted in order of A0 > A1 > A2 > A3, which confirms the conventional thought and observations, i.e., a negative age effect. The results indicate that new leaf flushing may benefit younger culms (A1 and A0) more than older culms (A2 and A3), i.e., increasing their transpiration response to radiation and share of the stand transpiration. With the underground connected rhizome system, the bamboo stand as an integration seems to balance its water use among culms of different ages to support the water use of freshly sprouted culms during their developing period.

SELECTION OF CITATIONS
SEARCH DETAIL
...