Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 12: 1391717, 2024.
Article in English | MEDLINE | ID: mdl-39045457

ABSTRACT

Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) that can participate in biological processes such as gene expression, growth, and development. However, little has been explored about the function of circRNAs in the development of Apis cerana larval guts. By using our previously gained deep sequencing data from the guts of A. cerana worker larvae at 4-, 5-, and 6-day-old (Ac4, Ac5, and Ac6 groups), the expression pattern and regulatory role of circular RNAs (circRNAs) during the development process was comprehensively investigated, with a focus on differentially expressed circRNAs (DEcircRNAs) relevant to immunity pathways and developmental signaling pathways, followed by validation of the binding relationships among a key competing endogenous RNA (ceRNA) axis. Here, 224 (158) DEcircRNAs were detected in the Ac4 vs. Ac5 (Ac5 vs. Ac6) comparison group. It's suggested that 172 (123) parental genes of DEcircRNAs were involved in 26 (20) GO terms such as developmental process and metabolic process and 138 (136) KEGG pathways like Hippo and Wnt signaling pathways. Additionally, ceRNA network analysis indicated that 21 (11) DEcircRNAs could target seven (three) DEmiRNAs, further targeting 324 (198) DEmRNAs. These DEmRNAs can be annotated to 33 (26) GO terms and 168 (200) KEGG pathways, including 12 (16) cellular and humoral immune pathways (endocytosis, lysosome, Jak-STAT, etc.) and 10 (nine) developmental signaling pathways (Hippo, mTOR, Hedgehog, etc.). Interestingly, DEcircRNAs in these two comparison groups could target the same ace-miR-6001-y, forming complex sub-networks. The results of PCR and Sanger sequencing confirmed the back-splicing sites within four randomly selected DEcircRNAs. RT-qPCR detection of these four DEcircRNAs verified the reliability of the used transcriptome data. The results of dual-luciferase reporter assay verified the binding relationships between novel_circ_001627 and ace-miR-6001-y and between ace-miR-6001-y and apterous-like. Our data demonstrated that DEcircRNAs were likely to modulate the developmental process of the A. cerana worker larval guts via regulation of parental gene transcription and ceRNA network, and novel_circ_001627/ace-miR-6001-y/apterous-like was a potential regulatory axis in the larval gut development. Findings from this work offer a basis and a candidate ceRNA axis for illustrating the circRNA-modulated mechanisms underlying the A. cerana larval guts.

2.
Insects ; 14(11)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37999096

ABSTRACT

Circular RNAs (circRNAs) are a class of novel non-coding RNAs (ncRNAs) that play essential roles in the development and growth of vertebrates through multiple manners. However, the mechanism by which circRNAs modulate the honey bee gut development is currently poorly understood. Utilizing the transcriptome data we obtained earlier, the highly expressed circRNAs in the Apis mellifera worker 4-, 5-, and 6-day-old larval guts were analyzed, which was followed by an in-depth investigation of the expression pattern of circRNAs during the process of larval guts development and the potential regulatory roles of differentially expressed circRNAs (DEcircRNAs). In total, 1728 expressed circRNAs were detected in the A. mellifera larval guts. Among the most highly expressed 10 circRNAs, seven (novel_circ_000069, novel_circ_000027, novel_circ_000438, etc.) were shared by the 4-, 5-, and 6-day-old larval guts. In addition, 21 (46) up-regulated and 22 (27) down-regulated circRNAs were, respectively, screened in the Am4 vs. Am5 (Am5 vs. Am6) comparison groups. Additionally, nine DEcircRNAs, such as novel_circ_000340, novel_circ_000758 and novel_circ_001116, were shared by these two comparison groups. These DEcircRNAs were predicted to be transcribed from 14 and 29 parental genes; these were respectively annotated to 15 and 22 GO terms such as biological regulation and catalytic activity as well as 16 and 21 KEGG pathways such as dorsoventral axis formation and apoptosis. Moreover, a complicated competing endogenous RNA (ceRNA) network was observed; novel_circ_000838 in the Am4 vs. Am5 comparison group potentially targeted ame-miR-6000a-3p, further targeting 518 mRNAs engaged in several developmental signaling pathways (e.g., TGF-beta, hedgehog, and wnt signaling pathway) and immune pathways (e.g., phagosome, lysosome, and MAPK signaling pathway). The results demonstrated that the novel_circ_000838-ame-miR-6000a-3p axis may plays a critical regulatory part in the larval gut development and immunity. Furthermore, back-splicing sites of six randomly selected DEcircRNAs were amplified and verified by PCR; an RT-qPCR assay of these six DEcircRNAs confirmed the reliability of the used high-throughput sequencing data. Our findings provide a novel insight into the honey bee gut development and pave a way for illustration of the circRNA-modulated developmental mechanisms underlying the A. mellifera worker larval guts.

SELECTION OF CITATIONS
SEARCH DETAIL
...