Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Sci Rep ; 14(1): 13831, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879647

ABSTRACT

Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells (ECs) that play an important role in liver development and regeneration. Additionally, it is involved in various pathological processes, including steatosis, inflammation, fibrosis and hepatocellular carcinoma. However, the rapid dedifferentiation of LSECs after culture greatly limits their use in vitro modeling for biomedical applications. In this study, we developed a highly efficient protocol to induce LSEC-like cells from human induced pluripotent stem cells (hiPSCs) in only 8 days. Using single-cell transcriptomic analysis, we identified several novel LSEC-specific markers, such as EPAS1, LIFR, and NID1, as well as several previously revealed markers, such as CLEC4M, CLEC1B, CRHBP and FCN3. These LSEC markers are specifically expressed in our LSEC-like cells. Furthermore, hiPSC-derived cells expressed LSEC-specific proteins and exhibited LSEC-related functions, such as the uptake of acetylated low density lipoprotein (ac-LDL) and immune complex endocytosis. Overall, this study confirmed that our novel protocol allowed hiPSCs to rapidly acquire an LSEC-like phenotype and function in vitro. The ability to generate LSECs efficiently and rapidly may help to more precisely mimic liver development and disease progression in a liver-specific multicellular microenvironment, offering new insights into the development of novel therapeutic strategies.


Subject(s)
Cell Differentiation , Endothelial Cells , Induced Pluripotent Stem Cells , Liver , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Liver/metabolism , Liver/cytology , Single-Cell Analysis/methods , Cells, Cultured , Biomarkers/metabolism , Lipoproteins, LDL/metabolism , Gene Expression Profiling
2.
J Pain ; : 104553, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719155

ABSTRACT

Hyperglycaemia and high adiposity are risk factors for pain in diabetes. To clarify these links with pain, the effects of a glucose load on sensory detection, pain sensitivity, conditioned pain modulation (primary aims), and autonomic and endothelial functions (secondary aims) were examined in 64 pain-free participants: 22 with normal adiposity (determined by dual-energy X-ray absorptiometry), 29 with high adiposity, and 13 with combined high adiposity and elevated glycated haemoglobin (HbA1c; including prediabetes and type 2 diabetes). Participants ingested either 37.5-g glucose or 200-mg sucralose (taste-matched) in the first session and crossed over to the other substance in the second session one month later. At baseline, painful temple cooling (the conditioning stimulus) inhibited pressure- and heat-pain in the ipsilateral arm (the test stimuli) immediately after cooling ceased (partial η2's >.32). Glucose ingestion weakened pressure-pain inhibition irrespective of HbA1c levels (partial η2 =.11). However, a larger reduction in pressure-pain inhibition after ingesting glucose was associated with a higher waist/hip ratio (r =.31), suggesting a role of central obesity. Heat-pain inhibition was absent at baseline in unmedicated participants with elevated HbA1c, and these participants reported more occlusion-induced pain after ingesting glucose (partial η2's >.17). Glucose ingestion interfered with parasympathetic activity in all participants (partial η2 =.11) but did not affect endothelial function (measured by reactive hyperaemia) or alter other sensations (e.g., feet vibration detection). The disruptive effect of hyperglycaemia on conditioned pain modulation increases in line with central obesity, which might facilitate pain in diabetes. PERSPECTIVE: Ingesting 37.5-g glucose (approximately 350-mL soft drink) interfered with pain modulation in pain-free adults with normal adiposity or with combined high adiposity and HbA1c levels. The interference was stronger alongside increasing central obesity, suggesting that controlling blood glucose and body fat mass might help preserve pain modulation.

3.
Eur J Pharmacol ; 974: 176602, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38677538

ABSTRACT

BACKGROUND: The interleukin (IL) -12 p40 subunit is the common subunit of IL-12 and IL-23. It affects the immune inflammatory response, which may be closely related to cardiac remodeling. In this study, the regulatory effect of IL-12p40 knockout (KO) on cardiac remodeling was investigated, and the underlying mechanism was explored. METHODS AND RESULTS: Mice were subjected to transverse aortic constriction (TAC) to establish a model of cardiac remodeling. First, IL-12p40 was deleted to observe its effects on cardiac remodeling and cardiac inflammation, and the results showed that IL-12p40 deletion reduced both T helper 17 (Th17) and γδT17 cell differentiation, decreased proinflammatory macrophage differentiation, alleviated cardiac remodeling, and relieved cardiac dysfunction in TAC mice. Next, we explored whether IL-17 regulated TAC-induced cardiac remodeling, and the results showed that IL-17 neutralization alleviated proinflammatory macrophage differentiation and cardiac remodeling in IL-12p40 knockout mice and WT mice. Neutralization with cluster of differentiation 4 receptor (CD4) and γδ T-cell receptor (γδTCR) antibodies inhibited pro-inflammatory macrophage polarization and improved cardiac remodeling, and CD4 neutralizing antibody (NAb) had more significant effects. Finally, adoptive transfer of Th17 cells aggravated proinflammatory macrophage differentiation and cardiac remodeling in TAC-treated CD4 KO mice, while neutralization with the IL-12p40 antibody alleviated these pathological changes. CONCLUSION: Mainly Th17 cells but not γδT17 cells secrete IL-17, which mediates IL-12p40, promotes the polarization of proinflammatory macrophages, and exacerbates cardiac remodeling in TAC mice. IL-12p40 may be a potential target for the prevention and treatment of cardiac remodeling.


Subject(s)
Cell Differentiation , Interleukin-12 Subunit p40 , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Th17 Cells , Ventricular Remodeling , Animals , Male , Mice , Cell Polarity/drug effects , Gene Deletion , Interleukin-12 Subunit p40/metabolism , Interleukin-12 Subunit p40/genetics , Interleukin-17/metabolism , Macrophages/immunology , Macrophages/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Th17 Cells/immunology
4.
Front Cardiovasc Med ; 11: 1337586, 2024.
Article in English | MEDLINE | ID: mdl-38516004

ABSTRACT

Cardiovascular diseases have been identified as vital factors in global morbidity and mortality in recent years. The available evidence suggests that various cytokines and pathological proteins participate in these complicated and changeable diseases. The thrombospondin (TSP) family is a series of conserved, multidomain calcium-binding glycoproteins that cause cell-matrix and cell-cell effects via interactions with other extracellular matrix components and cell surface receptors. The TSP family has five members that can be divided into two groups (Group A and Group B) based on their different structures. TSP-1, TSP-2, and TSP-4 are the most studied proteins. Among recent studies and findings, we investigated the functions of several family members, especially TSP-5. We review the basic concepts of TSPs and summarize the relevant molecular mechanisms and cell interactions in the cardiovascular system. Targeting TSPs in CVD and other diseases has a remarkable therapeutic benefit.

5.
HLA ; 103(2): e15397, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403864

ABSTRACT

HLA-C*12:02:52 differs from HLA-C*12:02:02:01 by one nucleotide in exon 1.


Subject(s)
Genes, MHC Class I , HLA-C Antigens , Humans , HLA-C Antigens/genetics , Alleles , Nucleotides , China , Sequence Analysis, DNA
6.
Biochem Pharmacol ; 222: 116072, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387530

ABSTRACT

BACKGROUND: Interleukin-23p19 (IL-23p19) has been demonstrated to be involved in the occurrence and development of cardiovascular diseases such as myocardial infarction and atherosclerosis. This study aimed to examine whether IL-23p19 regulates cardiac remodeling processes and explore its possible mechanisms. METHODS AND RESULTS: Transverse aortic constriction was performed to construct a mouse cardiac remodeling model, and sham surgery was used as a control. The results showed that IL-23p19 expression was increased in the heart after surgery and may be mainly produced by cardiac macrophages. Knockout of IL-23p19 attenuated M1 macrophage polarization, reduced ferroptosis, improved the process of cardiac remodeling and alleviated cardiac dysfunction in TAC mice. Cell culture experiments found that macrophages were the main cause of ferroptosis when phenylephrine (PE) was added, and blocking ferroptosis with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, significantly inhibited M1 macrophage polarization. Treatment with Fer-1 also improved cardiac remodeling and alleviated cardiac dysfunction in IL-23p19-/- mice subjected to TAC surgery. Finally, TAC IL-23p19-/- mice that were administered macrophages isolated from WT mice exhibited an increased proportion of M1 macrophages and aggravated cardiac remodeling, and these effects were reversed when Fer-1 was administered. CONCLUSION: Knockout of IL-23p19 may attenuate M1 macrophage polarization to improve the cardiac remodeling process by reducing macrophage ferroptosis, and IL-23p19 may be a potential target for the prevention and treatment of cardiac remodeling.


Subject(s)
Ferroptosis , Myocardial Infarction , Animals , Mice , Interleukin-23 Subunit p19/metabolism , Interleukin-23 Subunit p19/pharmacology , Interleukins/metabolism , Macrophages , Mice, Knockout , Myocardial Infarction/metabolism , Ventricular Remodeling
7.
NPJ Biofilms Microbiomes ; 10(1): 5, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245554

ABSTRACT

A high-fat diet (HFD) may be linked to an increased colorectal cancer (CRC) risk. Stem cell proliferation and adipokine release under inflammatory and obese conditions are the main factors regulating CRC progression. Furthermore, alterations in intestinal flora have been linked to tumorigenesis and tumour progression. However, whether a HFD can promote CRC occurrence by altering intestinal flora remains unclear. The objective of this study was to identify bacterial strains enriched by a HFD and investigate the association and mechanism by which a HFD and bacterial enrichment promote CRC occurrence and development. In this study, the intestinal microbiota of mice was assessed using 16S rRNA and metagenomic sequencing. Serum metabolites of HFD-fed mice were assessed using tandem liquid chromatography-mass spectrometry. CRC cell lines and organoids were co-cultured with Coriobacteriaceae to evaluate the effect of these bacteria on the CPT1A-ERK signalling pathway. We found that Coriobacteriaceae were enriched in the colons of HFD-fed mice. An endogenous Coriobacteriaceae strain, designated as Cori.ST1911, was successfully isolated and cultured from the stools of HFD-fed mice, and the tumorigenic potential of Cori.ST1911 in CRC was validated in several CRC mouse models. Furthermore, Cori.ST1911 increased acylcarnitine levels by activating CPT1A, demonstrating the involvement of the CPT1A-ERK axis. We also found that the endogenous Lactobacillus strain La.mu730 can interfere with Cori.ST1911 colonisation and restore gut barrier function. In conclusion, we identified a novel endogenous intestinal Coriobacteriaceae, Cori.ST1911, which might lead to a new gut microbiota intervention strategy for the prevention and treatment of CRC.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Mice , Animals , Diet, High-Fat/adverse effects , RNA, Ribosomal, 16S/genetics , Carcinogenesis , Gastrointestinal Microbiome/physiology , Colorectal Neoplasms/etiology
8.
Immunol Res ; 72(1): 1-13, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044398

ABSTRACT

Hypertension is one of the leading causes of death due to target organ injury from cardiovascular disease. Although there are many treatments, only one-sixth of hypertensive patients effectively control their blood pressure. Therefore, further understanding the pathogenesis of hypertension is essential for the treatment of hypertension. Much research shows that immune cells play an important role in the pathogenesis of hypertension. Here, we discuss the roles of different immune cells in hypertension. Many immune cells participate in innate and adaptive immune responses, such as monocytes/macrophages, neutrophils, dendritic cells, NK cells, and B and T lymphocytes. Immune cells infiltrate the blood vessels, kidneys, and hearts and cause damage. The mechanism is that immune cells secrete cytokines such as interleukin, interferon, and tumor necrosis factor, which affect the inflammatory reaction, oxidative stress, and kidney sodium water retention, and finally aggravate or reduce the dysfunction, remodeling, and fibrosis of the blood vessel, kidney, and heart to participate in blood pressure regulation. This article reviews the research progress on immune cells and hypertension.


Subject(s)
Hypertension , Humans , Hypertension/pathology , Kidney , Cytokines , T-Lymphocytes , Inflammation
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1016550

ABSTRACT

ObjectiveTo analyze the suicidal behavior in hospitalized patients with major depression and its influencing factors. MethodsA total of 1 000 patients with major depression admitted to our hospital from January 2017 to July 2021 were selected as the research subjects to investigate the status quo of suicidal behavior of the enrolled patients. According to the survey results, the patients were divided into suicidal behavior group and non-suicidal behavior group, and the related factors affecting their suicidal behavior. ResultsA total of 511 cases (51.10%) of the patients with major depression committed suicide in hospital, including 271 cases (27.10%) of suicidal ideation, 186 cases (18.60%) of attempted suicide, and 54 cases (5.40%) of suicide death. 489 patients (48.90%) did not commit suicide. Univariate analysis showed that there were significant differences in age, gender, marital status, loss of interest or pleasure, anxiety, sense of worthlessness or self-guilt, sleep status, personality, depressive episodes and paranoia between the suicidal behavior group and the non-suicidal behavior group (all P<0.05). Logistic multifactorial regression analysis showed that age ≤28 years (OR=1.54), female (OR=1.93), anxiety (OR=1.61), sense of worthlessness or self-guilt (OR=1.85) and paranoia (OR=2.15) were all independent predictors of suicidal behavior in the patients with major depression. ConclusionThe incidence of nosocomial suicide in patients with major depression is high. Early onset age, female, anxiety, sense of worthlessness or self-guilt, more depressive episodes and paranoia are independent risk predictors of suicide in patients with major depression. This finding can be used for clinical intervention to reduce the occurrence of suicide in patients.

10.
Cell Mol Life Sci ; 80(11): 324, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37824022

ABSTRACT

Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.


Subject(s)
Myocardial Infarction , Ventricular Remodeling , Animals , Mice , Disease Models, Animal , Fibrosis , Inflammation/pathology , Macrophages/metabolism , Mice, Inbred C57BL , Myocardial Infarction/pathology , Myocardium/metabolism , Signal Transduction , Transcription Factors/metabolism , Janus Kinase 1/metabolism , STAT1 Transcription Factor/metabolism
11.
Drug Des Devel Ther ; 17: 3073-3083, 2023.
Article in English | MEDLINE | ID: mdl-37849783

ABSTRACT

Background: Increased inflammation contributes to pressure overload-induced myocardial remodeling. 17(R)-Resolvin D1 (17(R)-RvD1), a potent lipid mediator derived from docosahexaenoic acid, possesses anti-inflammatory and pro-resolving properties. However, the association between 17(R)-RvD1 and pressure overload-induced cardiac hypertrophy remains unclear. Methods: Transverse aortic constriction (TAC) surgery was performed to establish a cardiac hypertrophy model. C57BL/6J mice were randomly assigned to the Sham, TAC and TAC+17(R)-RvD1 groups. 17(R)-RvD1 was injected (2 µg/kg, i.p.) before TAC surgery and once every other day after surgery for 4 weeks. The same volume of saline was injected into the mice in both Sham group and TAC group. Then, cardiac function was evaluated and heart tissues were collected for biological analysis. Results: 17(R)-RvD1 treatment attenuated TAC-induced increase in left ventricular diameter and decrease in left ventricular contractility, mitigated increased cardiomyocyte cross-sectional area, and downregulated the expression of hypertrophic genes. Besides, 17(R)-RvD1 attenuated myocardial fibrosis, as indicated by the decreased LV collagen volume and expression of fibrotic genes. In addition, 17(R)-RvD1 ameliorated the inflammatory response in cardiac tissue, as illustrated by the decreased infiltration of CD68+ macrophages and reduced production of pro-inflammatory cytokines, including TNF-α, IL-1ß, and IL-6. 17(R)-RvD1 treatment significantly suppressed the activation of NLRP3 inflammasome after TAC surgery, which might be responsible for the attenuation of inflammation in cardiac tissue. Conclusion: 17(R)-RvD1 attenuated pressure overload-induced cardiac hypertrophy and fibrosis, and the possible mechanism may be associated with the inhibition of NLRP3 inflammasome. 17(R)-RvD1 may serve as a potential drug for the treatment of cardiac hypertrophy.


Subject(s)
Docosahexaenoic Acids , Inflammasomes , Mice , Animals , Docosahexaenoic Acids/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Anti-Inflammatory Agents/therapeutic use , Myocytes, Cardiac , Fibrosis , Inflammation/drug therapy , Inflammation/metabolism , Ventricular Remodeling
12.
Behav Sci (Basel) ; 13(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37754003

ABSTRACT

Effectively promoting employees' intrapreneurial behavior has become the focus of enterprises. This study takes the middle and grassroots employees in enterprises as subjects and explores the configuration effect of multiple influencing factors on employees' intrapreneurial behavior. Based on employee expectation theory and individual-environment matching theory, this study collates six influencing factors: entrepreneurial self-efficacy, entrepreneurial competence, task school level, perceived value, management support, and reward mechanism. A total of 163 samples were obtained, and the qualitative comparative analysis method based on fuzzy set was used to analyze the influence mechanism and result path of employees' intrapreneurial behavior from the perspective of the interaction between individual factors and organizational factors. Six influencing paths of employees' high intrapreneurial behavior were found, which can be divided into ability-driven and value-driven factors, revealing that the six factors can produce equivalent results in different configurations. Furthermore, five influencing paths of employees' non-high intrapreneurial behavior were divided into three types: ability obstacle type, perception obstacle type, and value obstacle type. These have an asymmetric causal relationship with employees' high intrapreneurial behavior. This study provides management support for effectively stimulating employees' intrapreneurial behavior.

13.
ACS Appl Mater Interfaces ; 15(31): 37214-37231, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37498537

ABSTRACT

Currently, antibiotics are the most common treatment for bacterial infections in clinical practice. However, with the abuse of antibiotics and the emergence of drug-resistant bacteria, the use of antibiotics has faced an unprecedented challenge. It is imminent to develop nonantibiotic antimicrobial agents. Based on the cation-π structure of barnacle cement protein, a polyphosphazene-based polymer poly[(N,N-dimethylethylenediamine)-g-(N,N,N,N-dimethylaminoethyl p-ammonium bromide (ammonium bromide)-g-(N,N,N,N-dimethylaminoethyl acetate ethylammonium bromide)] (PZBA) with potential adhesion and inherent antibacterial properties was synthesized, and a series of injectable antibacterial adhesive hydrogels (PZBA-PVA) were prepared by cross-linking with poly(vinyl alcohol) (PVA). PZBA-PVA hydrogels showed good biocompatibility, and the antibacterial rate of the best-performed hydrogel reached 99.81 ± 0.04% and 98.80 ± 2.16% against Staphylococcus aureus and Escherichia coli within 0.5 h in vitro, respectively. In the infected wound model, the healing rate of the PZBA-PVA-treated group was significantly higher than that of the Tegaderm film group due to the fact that the hydrogel suppressed inflammatory responses and modulated the infiltration of immune cells. Moreover, the wound healing mechanism of the PZBA-PVA hydrogel was further evaluated by real-time polymerase chain reaction and total RNA sequencing. The results indicated that the process of hemostasis and tissue development was prompted and the inflammatory and immune responses were suppressed to accelerate wound healing. Overall, the PZBA-PVA hydrogel is shown to have the potential for infected wound healing application.


Subject(s)
Staphylococcal Infections , Tissue Adhesives , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
14.
J Mol Med (Berl) ; 101(6): 731-742, 2023 06.
Article in English | MEDLINE | ID: mdl-37149518

ABSTRACT

Previous studies have demonstrated that bone morphogenetic proteins (BMPs) play important roles in cardiovascular diseases, including atherosclerosis, artery calcification, myocardial remodeling, pulmonary arterial hypertension, and diabetic cardiomyopathy. Kielin/chordin-like protein (KCP) is a secreted protein that regulates the expression and function of BMPs. However, the role of KCP in cardiac aging remains unknown. In this study, we aimed to investigate the role of KCP in cardiac aging and its possible mechanisms. Echocardiogram showed that heart function was impaired in aged mice (24 months). In addition, analysis of heart structure showed that KCP knockout (KO) aggravated cardiac remodeling in aged mice. Moreover, KCP KO increased p-smad2/3 and TGF-ß expression, while decreased BMP-2 expression in aged mice. Furthermore, KCP KO increased the expression of cardiac senescence-related proteins in aged mice. KCP KO aggravated the imbalance of oxidants and antioxidants and increased the expression of proinflammatory cytokines and cardiomyocyte apoptosis in aged mice. Our study demonstrated that KCP KO aggravated cardiac aging in mice by increasing the levels of oxidative stress, inflammation, and cardiomyocyte apoptosis. KEY MESSAGE: KCP KO aggravated aging-related cardiac dysfunction and remodeling in male mice. KCP KO aggravated cardiac aging by increasing the levels of oxidative stress, inflammation, and cardiomyocyte apoptosis.


Subject(s)
Carrier Proteins , Protein Deficiency , Mice , Male , Animals , Carrier Proteins/chemistry , Aging/genetics , Aging/metabolism , Inflammation , Mice, Knockout , Myocytes, Cardiac/metabolism , Mice, Inbred C57BL
15.
Biochem Pharmacol ; 210: 115469, 2023 04.
Article in English | MEDLINE | ID: mdl-36868324

ABSTRACT

BACKGROUND: Several interleukins (ILs) have been demonstrated to participate in cardiac injury. This study aimed to investigate whether IL-27p28 plays a regulatory role in doxorubicin (DOX)-induced cardiac injury by regulating inflammation and oxidative stress. METHODS: Dox was used to establish a mouse cardiac injury model, and IL-27p28 was knocked out to observe its role in cardiac injury. In addition, monocytes were adoptively transferred to clarify whether monocyte-macrophages mediate the regulatory role of IL-27p28 in DOX-induced cardiac injury. RESULTS: IL-27p28 knockout significantly aggravated DOX-induced cardiac injury and cardiac dysfunction. IL-27p28 knockout also upregulated the phosphorylation levels of p65 and STAT1 and promoted M1 macrophage polarization in DOX-treated mice, which increased cardiac inflammation and oxidative stress. Moreover, IL-27p28-knockout mice that were adoptively transferred WT monocytes exhibited worse cardiac injury and cardiac dysfunction and higher cardiac inflammation and oxidative stress. CONCLUSIONS: IL-27p28 knockdown aggravates DOX-induced cardiac injury by worsening the M1 macrophage/M2 macrophage imbalance and its associated inflammatory response and oxidative stress.


Subject(s)
Cardiotoxicity , Heart Diseases , Interleukins , Animals , Mice , Apoptosis , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Doxorubicin/adverse effects , Doxorubicin/metabolism , Heart Diseases/metabolism , Inflammation/metabolism , Macrophages , Myocytes, Cardiac/metabolism , Oxidative Stress , Interleukins/genetics , Interleukins/metabolism
16.
Front Pharmacol ; 14: 1125642, 2023.
Article in English | MEDLINE | ID: mdl-36909186

ABSTRACT

Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-ß (TGF-ß) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.

17.
Biomater Res ; 27(1): 6, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737833

ABSTRACT

BACKGROUND: Post-traumatic massive hemorrhage demands immediately available first-aid supplies with reduced operation time and good surgical compliance. In-situ crosslinking gels that are flexibly adapting to the wound shape have a promising potential, but it is still hard to achieve fast gelation, on-demand adhesion, and wide feasibility at the same time. METHODS: A white-light crosslinkable natural milk-derived casein hydrogel bioadhesive is presented for the first time. Benefiting from abundant tyrosine residues, casein hydrogel bioadhesive was synthesized by forming di-tyrosine bonds under white light with a ruthenium-based catalyst. We firstly optimized the concentration of proteins and initiators to achieve faster gelation and higher mechanical strength. Then, we examined the degradation, cytotoxicity, tissue adhesion, hemostasis, and wound healing ability of the casein hydrogels to study their potential to be used as bioadhesives. RESULT: Rapid gelation of casein hydrogel is initiated with an outdoor flashlight, a cellphone flashlight, or an endoscopy lamp, which facilitates its usage during first-aid and minimally invasive operations. The rapid gelation enables 3D printing of the casein hydrogel and excellent hemostasis even during liver hemorrhage due to section injury. The covalent binding between casein and tissue enables robust adhesion which can withstand more than 180 mmHg blood pressure. Moreover, the casein-based hydrogel can facilitate post-traumatic wound healing caused by trauma due to its biocompatibility. CONCLUSION: Casein-based bioadhesives developed in this study pave a way for broad and practical application in emergency wound management.

18.
Eur J Pain ; 27(3): 353-365, 2023 03.
Article in English | MEDLINE | ID: mdl-36451612

ABSTRACT

BACKGROUND: Applying an ice cube to the temple (the conditioning stimulus) inhibits electrically evoked pain in the forearm. The present study aimed to determine whether temple cooling also inhibits pressure- and heat-pain test stimuli in the upper limb and, if so, to investigate the intra-session test-retest reliability of this response. Additional aims were to establish whether pain inhibition evoked by temple cooling was associated with parasympathetic activity; and to explore sex differences in response. METHODS: The sample consisted of 40 healthy adults (24 females). Heart rate was recorded continuously throughout the session. An ice cube (3 × 4 cm contact area) was applied for 1 min to the temple on the dominant side. Before and immediately afterwards, the pressure pain threshold was measured from the dorsal hand and sensitivity to heat (individually adjusted at baseline to elicit moderate pain) was measured from the ventral forearm. The procedures were repeated 15 min later. RESULTS: Temple cooling inhibited pressure pain on the hand but not heat pain on the forearm. However, test-retest reliability of pressure pain inhibition was poor. Heart rate decreased during temple cooling, consistent with a "diving" reflex. Males had stronger pressure pain inhibition, lower heart rate and higher overall autonomic activity than females. However, cardiac parasympathetic activation during temple cooling was comparable in both sexes and was unrelated to pain inhibition. CONCLUSIONS: These findings indicate that temple cooling evokes pain inhibition that is stronger in males than in females. Cardiac parasympathetic activity does not appear to mediate this response. SIGNIFICANCE: The conditioning stimulus in the conditioned pain modulation paradigm is often applied to the upper or lower limbs. This may confound pain-inhibitory effects in people with peripheral neuropathy who typically have enhanced or diminished sensation in the extremities. Applying an ice cube at the temple area induces pain-inhibitory effects on the upper limb after the ice is removed. Future research examining pain modulation in people with peripheral neuropathy may consider adopting temple cooling as the conditioning stimulus.


Subject(s)
Ice , Pain , Adult , Humans , Male , Female , Reproducibility of Results , Pain Threshold/physiology , Hand
19.
J Pain ; 24(1): 128-144, 2023 01.
Article in English | MEDLINE | ID: mdl-36122810

ABSTRACT

To investigate links between blood glucose, body fat mass and pain, the effects of acute hyperglycaemia on pain sensitivity and pain inhibition were examined in healthy adults with normal (n = 24) or excess body fat (n = 20) determined by dual-energy X-ray absorptiometry. Effects of hyperglycaemia on heart rate variability and reactive hyperaemia were also explored. For the overall sample, ingesting 75-g glucose enhanced pain sensitivity during 1-minute cold-water immersion of both feet (conditioning stimulus) and weakened the pain inhibitory effect of cold water on pressure pain thresholds (test stimulus). Exploratory subgroup analyses not adjusted for multiple comparisons suggested that this effect was limited to people with excess fat mass. In addition, acute hyperglycaemia suppressed resting heart rate variability only in people with excess fat mass. Furthermore, regardless of blood glucose levels, people with excess fat mass had weaker pain inhibition for pinprick after cold water and reported more pain during 5-minutes of static blood flow occlusion. Neither high blood glucose nor excess body fat affected pinprick-temporal summation of pain or reactive hyperaemia. Together, these findings suggest that hyperglycaemia and excess fat mass interfere with pain processing and autonomic function. PERSPECTIVE: Ingesting 75-g glucose (equivalent to approximately 2 standard cans of soft drink) interfered with pain-processing and autonomic function, particularly in people with excess body fat mass. As both hyperglycaemia and overweight are risk factors for diabetes, whether these are sources of pain in people with diabetes should be further explored.


Subject(s)
Hyperemia , Hyperglycemia , Humans , Adult , Blood Glucose , Pain Threshold , Single-Blind Method , Adipose Tissue , Pain , Glucose
20.
Front Immunol ; 13: 911661, 2022.
Article in English | MEDLINE | ID: mdl-36211352

ABSTRACT

Ischemic stroke is a leading cause of disability and death. It imposes a heavy economic burden on individuals, families and society. The mortality rate of ischemic stroke has decreased with the help of thrombolytic drug therapy and intravascular intervention. However, the nerve damage caused by ischemia-reperfusion is long-lasting and followed by multiple organ dysfunction. In this process, the immune responses manifested by systemic inflammatory responses play an important role. It begins with neuroinflammation following ischemic stroke. The large number of inflammatory cells released after activation of immune cells in the lesion area, along with the deactivated neuroendocrine and autonomic nervous systems, link the center with the periphery. With the activation of systemic immunity and the emergence of immunosuppression, peripheral organs become the second "battlefield" of the immune response after ischemic stroke and gradually become dysfunctional and lead to an adverse prognosis. The purpose of this review was to describe the systemic immune responses after ischemic stroke. We hope to provide new ideas for future research and clinical treatments to improve patient outcomes and quality of life.


Subject(s)
Ischemic Stroke , Stroke , Fibrinolytic Agents , Humans , Immunity , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...