Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 130(7): 1109-1118, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341511

ABSTRACT

BACKGROUND: 13-15% of breast cancer/BC patients diagnosed as pathological complete response/pCR after neoadjuvant systemic therapy/NST suffer from recurrence. This study aims to estimate the rationality of organoid forming potential/OFP for more accurate evaluation of NST efficacy. METHODS: OFPs of post-NST residual disease/RD were checked and compared with clinical approaches to estimate the recurrence risk. The phenotypes of organoids were classified via HE staining and ER, PR, HER2, Ki67 and CD133 immuno-labeling. The active growing organoids were subjected to drug sensitivity tests. RESULTS: Of 62 post-NST BC specimens, 24 were classified as OFP-I with long-term active organoid growth, 19 as OFP-II with stable organoid growth within 3 weeks, and 19 as OFP-III without organoid formation. Residual tumors were overall correlated with OFP grades (P < 0.001), while 3 of the 18 patients (16.67%) pathologically diagnosed as tumor-free (ypT0N0M0) showed tumor derived-organoid formation. The disease-free survival/DFS of OFP-I cases was worse than other two groups (Log-rank P < 0.05). Organoids of OFP-I/-II groups well maintained the biological features of their parental tumors and were resistant to the drugs used in NST. CONCLUSIONS: The OFP would be a complementary parameter to improve the evaluation accuracy of NST efficacy of breast cancers.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Neoadjuvant Therapy , Disease-Free Survival , Receptor, ErbB-2 , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
2.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430869

ABSTRACT

Anaplastic thyroid cancer is an extremely lethal malignancy without reliable treatment. BRAFV600E point mutation is common in ATCs, which leads to MAPK signaling activation and is regarded as a therapeutic target. Resveratrol inhibits ATC cell growth, while its impact on BRAF-MAPK signaling remains unknown. This study aims to address this issue by elucidating the statuses of BRAF-MAPK and STAT3 signaling activities in resveratrol-treated THJ-11T, THJ-16T, and THJ-21T ATC cells and Nthyori 3-1 thyroid epithelial cells. RT-PCR and Sanger sequencing revealed MKRN1-BRAF fusion mutation in THJ-16T, BRAF V600E point mutation in THJ-21T, and wild-type BRAF genes in THJ-11T and Nthyori 3-1 cells. Western blotting and immunocytochemical staining showed elevated pBRAF, pMEK, and pERK levels in THJ-16T and THJ-21T, but not in THJ-11T or Nthyori 3-1 cells. Calcein/PI, EdU, and TUNEL assays showed that compared with docetaxel and doxorubicin and MAPK-targeting dabrafenib and trametinib, resveratrol exerted more powerful inhibitory effects on mutant BRAF-harboring THJ-16T and THJ-21T cells, accompanied by reduced levels of MAPK pathway-associated proteins and pSTAT3. Trametinib- and dabrafenib-enhanced STAT3 activation was efficiently suppressed by resveratrol. In conclusion, resveratrol acts as dual BRAF-MAPK and STAT3 signaling inhibitor and a promising agent against ATCs with BRAF mutation.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/pathology , Resveratrol/pharmacology , Resveratrol/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Mutation , Signal Transduction , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
3.
Cancer Sci ; 113(10): 3618-3632, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35946078

ABSTRACT

Osteosarcoma (OS) is the most common bone malignancy without a reliable therapeutic target. Glypican-3 (GPC3) mutation and upregulation have been detected in multidrug resistant OS, and anti-GPC3 immunotherapy can effectively suppress the growth of organoids. Further profiling of GPC3 mutations and expression patterns in OS is of clinical significance. To address these issues, fresh OS specimens were collected from 24 patients for cancer-targeted next-generation sequencing (NGS) and three-dimensional patient-derived organoid (PDO) culture. A tumor microarray was prepared using 37 archived OS specimens. Immunohistochemical (IHC) staining was performed on OS specimens and microarrays to profile GPC3 and CD133 expression as well as intratumoral distribution patterns. RT-PCR was conducted to semiquantify GPC3 and CD133 expression levels in the OS tissues. Anti-GPC3 immunotherapy was performed on OS organoids with or without GPC3 expression and its efficacy was analyzed using multiple experimental approaches. No OS cases with GPC3 mutations were found, except for the positive control (OS-08). IHC staining revealed GPC3 expression in 73.77% (45/61) of OSs in weak (+; 29/45), moderate (++; 8/45), and strong (+++; 8/45) immunolabeling densities. The intratumoral distribution of GPC3-positive cells was variable in the focal (+; 10%-30%; 8/45), partial (++; 31%-70%; 22/45), and the most positive patterns (+++; >71%; 15/45), which coincided with CD133 immunolabeling (P = 9.89 × 10-10 ). The anti-GPC3 antibody efficiently inhibits Wnt/ß-catenin signaling and induces apoptosis in GPC3-positive PDOs and PDXs, as opposed to GPC3-negative PDOs and PDXs. The high frequency of GPC3 and CD133 co-expression and the effectiveness of anti-wild-type GPC3-Ab therapy in GPC3-positive OS models suggest that GPC3 is a novel prognostic parameter and a promising therapeutic target for osteosarcoma.


Subject(s)
Bone Neoplasms , Carcinoma, Hepatocellular , Liver Neoplasms , Osteosarcoma , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Glypicans/metabolism , Humans , Liver Neoplasms/pathology , Osteosarcoma/drug therapy , Osteosarcoma/genetics , beta Catenin
4.
Phytother Res ; 36(8): 3313-3324, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35649509

ABSTRACT

The lack of reliable drugs is a therapeutic challenge of advanced breast cancers (ABCs). Resveratrol (Res) exerts inhibitory effects on breast cancer cell lines and animal models, while its efficacy against individual breast cancer cases remains unknown. This study aims to use ABC-derived organoids (ABCOs) as the ex vivo therapeutic platform to clarify the effectiveness of resveratrol against different ABC subtypes. Immunohistochemical staining confirmed that the ABCOs maintained their original tumors' ER, PR, HER2, and Ki67 expression patterns. ABCO proliferation and viability tests showed >50% cell death rates in 79.2% (19/24) of Res-treated, 28.6% (2/7) fulvestrant-treated, 66.7% (4/6) paclitaxel-treated, and 66.7% (6/9) gemcitabine-treated ABCOs. pSTAT3 nuclear translocation was more frequent in Res-sensitive (17/19; 89.47%) than that (1/5; 20%) of Res-insensitive ABCOs, which were suppressed upon Res treatment. Statistical analysis revealed a close correlation of STAT3 activation with the efficacy of Res, but not related to tumor receptor expression patterns (ER, PR, HER2) and pathological classification. We demonstrate for the first time the higher efficacy and broader spectrum of Res against different subtypes of ABCOs in comparison with that of conventional antibreast cancer drugs, providing an alternative approach for better management of ABCs.


Subject(s)
Breast Neoplasms , Organoids , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Organoids/metabolism , Organoids/pathology , Resveratrol/pharmacology , Resveratrol/therapeutic use
5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34638961

ABSTRACT

Glioblastoma multiforme (GBM) is the most common lethal primary brain malignancy without reliable therapeutic drugs. IL-13Rα2 is frequently expressed in GBMs as a molecular marker. Resveratrol (Res) effectively inhibits GBM cell growth but has not been applied in vivo because of its low brain bioavailability when administered systemically. A sustained-release and GBM-targeting resveratrol form may overcome this therapeutic dilemma. To achieve this goal, encapsulated Res 30 ± 4.8 nm IL-13Rα2-targeting nanoparticles (Pep-PP@Res) were constructed. Ultraviolet spectrophotometry revealed prolonged Res release (about 25%) from Pep-PP@Res in 48 h and fluorescent confocal microscopy showed the prolonged intracellular Res retention time of Pep-PP@Res (>24 h) in comparison with that of free Res (<4 h) and PP@Res (<4 h). MTT and EdU cell proliferation assays showed stronger suppressive effects of Pep-PP@Res on rat C6 GBM cells than that of PP@Res (p = 0.024) and Res (p = 0.009) when used twice for 4 h/day. Pep-PP@Res had little toxic effect on normal rat brain cells. The in vivo anti-glioblastoma effects of Res can be distinctly improved in the form of Pep-PP@Res nanoparticles via activating JNK signaling, upregulating proapoptosis gene expression and, finally, resulting in extensive apoptosis. Pep-PP@Res with sustained release and GBM-targeting properties would be suitable for in vivo management of GBMs.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Drug Carriers/chemistry , Glioblastoma/drug therapy , Glioblastoma/metabolism , Interleukin-13 Receptor alpha2 Subunit/antagonists & inhibitors , Interleukin-13 Receptor alpha2 Subunit/metabolism , Nanoparticles/chemistry , Resveratrol/administration & dosage , Animals , Apoptosis/drug effects , Brain Neoplasms/pathology , Capsules , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Liberation , Glioblastoma/pathology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Rats , Treatment Outcome , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
6.
J Bone Oncol ; 30: 100391, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34611509

ABSTRACT

BACKGROUND: Drug resistance and the lack of molecular therapeutic target are the main challenges in the management of osteosarcomas (OSs). Identification of novel genetic alteration(s) related with OS recurrence and chemotherapeutic resistance would be of scientific and clinical significance. METHODS: To identify potential genetic alterations related with OS recurrence and chemotherapeutic resistance, the biopsies of a 20-year-old male osteosarcoma patient were collected at primary site (p-OS) and from its metastatic tumor (m-OS) formed after 5 months of adjuvant chemotherapy. Both OS specimens were subjected to cancer-targeted next generation sequencing (NGS) and their cell suspensions were cultured under three-dimensional condition to establish spheroid therapeutic model. Transcript-oriented Sanger sequencing for GPC3, the detected mutated gene, was performed on RNA samples of p-OS and m-OS tissues and spheroids. The effects of anti-GPC3 antibody and its combination with cisplatin on m-OS spheroids were elucidated. RESULTS: NGS revealed 4 mutations (GPC3, SOX10, MDM4 and MAPK8) and 6 amplifications (MDM2, CDK4, CCND3, RUNX2, GLI1 and FRS2) in p-OS, and 3 mutations (GPC3, SOX10 and EGF) and 10 amplifications (CDK4, CCND3, MDM2, RUNX2, GLI1, FRS2, CARD11, RAC1, SLC16A7 and PMS2) in m-OS. Among those alterations, the mutation abundance of GPC3 was the highest (56.49%) in p-OS and showed 1.54 times increase in m-OS. GPC3 transcript-oriented Sanger sequencing confirmed the mutation at 1046 in Exon 4, and immunohistochemical staining showed increased GPC3 production in m-OS tissues and its spheroids. EdU cell proliferation and Calcein/PI cell viability assays revealed that of the anti-OS first line drugs (doxorubicin, cisplatin, methotrexate, ifosfamide and carboplatin), 10 µM carboplatin exerted the best inhibitory effects on the p-OS but not the m-OS spheroids. 2 µg/mL anti-GPC3 antibody effectively committed m-OS spheroids to death by itself (76.43%) or in combination with cisplatin (92.93%). CONCLUSION: This study demonstrates increased abundance and up-regulated expression of mutant GPC3 in metastatic osteosarcoma and its spheroids with multidrug resistance. As GPC3-targeting therapy has been used to treat hepatocellular carcinomas and it is also effective to OS PDSs, GPC3 would be a novel prognostic parameter and therapeutic target of osteosarcomas.

7.
Nanotheranostics ; 5(2): 143-154, 2021.
Article in English | MEDLINE | ID: mdl-33457193

ABSTRACT

Background: Docetaxel and doxorubicin combination has been widely used in anaplastic thyroid cancer/ATC treatment but often results in serious adverse effects and drug resistance. Resveratrol effectively inhibits ATC cell proliferation in vitro without affecting the corresponding normal cells, while its in vivo anti-ATC effects especially on the ones with docetaxel/doxorubicin-resistance have not been reported due to its low bioavailability. Nanoparticles with sustained-release and cancer-targeting features may overcome this therapeutic bottleneck. Methods: The resveratrol nanoparticles with sustained-release and IL-13Rα2-targeting capacities (Pep-1-PEG3.5k-PCL4k@Res) were prepared to improve the in vivo resveratrol bioavailability. Human THJ-16T ATC cell line was employed to establish nude mice subcutaneous transplantation model. The tumor-bearing mice were divided into four groups as Group-1, without treatment, Group-2, treated by 30 mg/kg free resveratrol, Group-3, treated by 30 mg/kg Pep-1-PEG3.5k-PCL4k@Res and Group-4, treated by 5 mg/kg docetaxel/5 mg/kg doxorubicin combination. TUNEL staining was used to detect the apoptotic cells in the tumor tissues. Docetaxel/doxorubicin resistant xenografts named as THJ-16T/R were isolated and subjected to 2D and 3D culture. The docetaxel/doxorubicin and resveratrol sensitivities of the original THJ-16T and THJ-16T/R cells were analyzed by multiple methods. Results: Docetaxel/doxorubicin and Pep-1-PEG3.5k-PCL4k@Res but not free resveratrol significantly delayed tumor growth (P < 0.01) and caused extensive apoptosis. The mice in docetaxel/doxorubicin-treated group suffered from weight loss (> 10%) and 2/3 of them died within 3 times of treatment and the chemotherapy was stop to avoid further animal loss. One week after drug withdrawal, the subcutaneous tumors regrew and the tumor volume increased 55.28% within 14 days. The cells isolated from the regrowing tumors (THJ-16T/R) were successfully cultured under 2D and 3D condition and underwent drug treatments. Compared with THJ-16T, the death rate of docetaxel/doxorubicin-treated THJ-16T/R population was lower (39.3% vs 18.0%), which remained almost unchanged in resveratrol-treated group (45.3% vs 49.3%). Conclusion: Resveratrol sustained-release targeting nanoparticles effectively inhibit in vivo ATC growth. Docetaxel/doxorubicin suppresses ATC xenografts but causes obvious side effects and secondary drug resistance that can be overcome by resveratrol.


Subject(s)
Antineoplastic Agents/pharmacology , Docetaxel/pharmacology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Nanoparticles/chemistry , Resveratrol/pharmacology , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/pathology , Animals , Apoptosis/drug effects , Cell Line, Tumor , In Vitro Techniques , Mice, Nude , Resveratrol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...