Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 28(11): e18476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842136

ABSTRACT

Osteoarthritis (OA) is a complicated disease that involves apoptosis and mitophagy. MST1 is a pro-apoptotic factor. Hence, decreasing its expression plays an anti-apoptotic effect. This study aims to investigate the protective effect of MST1 inhibition on OA and the underlying processes. Immunofluorescence (IF) was used to detect MST1 expression in cartilage tissue. Western Blot, ELISA and IF were used to analyse the expression of inflammation, extracellular matrix (ECM) degradation, apoptosis and mitophagy-associated proteins. MST1 expression in chondrocytes was inhibited using siRNA and shRNA in vitro and in vivo. Haematoxylin-Eosin, Safranin O-Fast Green and alcian blue staining were used to evaluate the therapeutic effect of inhibiting MST1. This study discovered that the expression of MST1 was higher in OA patients. Inhibition of MST1 reduced inflammation, ECM degradation and apoptosis and enhanced mitophagy in vitro. MST1 inhibition slows OA progression in vivo. Inhibiting MST1 suppressed apoptosis, inflammation and ECM degradation via promoting Parkin-mediated mitophagy and the Nrf2-NF-κB axis. The results suggest that MST1 is a possible therapeutic target for the treatment of osteoarthritis as its inhibition delays the progression of OA through the Nrf2-NF-κB axis and mitophagy.


Subject(s)
Apoptosis , Chondrocytes , Disease Progression , Mitophagy , NF-E2-Related Factor 2 , NF-kappa B , Osteoarthritis , Signal Transduction , Ubiquitin-Protein Ligases , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Mitophagy/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Apoptosis/genetics , Male , Mice , Extracellular Matrix/metabolism , Gene Knockdown Techniques , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins
2.
Int Immunopharmacol ; 118: 110059, 2023 May.
Article in English | MEDLINE | ID: mdl-37001384

ABSTRACT

Plastic surgery frequently employs random skin flaps. However, its clinical applicability is constrained by flap necrosis brought on by ischemia-reperfusion damage. Flap survival is aided by rosuvastatin, a naturally occurring flavonoid primarily obtained from plants. In this research, we looked into the processes mediating the effects of rosuvastatin on flap survival. All experimental mice were randomly assigned to three groups: control, rosuvastatin, and 3-methyladenine (3MA) plus rosuvastatin. These groups were, respectively, treated with dimethyl sulfoxide solution, rosuvastatin, and rosuvastatin combined with 3MA. After that, the animals were euthanized so that histology and protein analyses could determine the extent of angiogenesis, pyroptosis, oxidative stress, and autophagy. In addition to lessening tissue edema, rosuvastatin promoted the survival of the skin flap. Rosuvastatin also promoted angiogenesis, reduced oxidative stress, induced autophagy, and reduced pyroptosis. According to the study's findings, rosuvastatin increases angiogenesis, prevents pyroptosis, and reduces oxidative stress by inducing autophagy, which improves the survival rate of random skin flaps.


Subject(s)
AMP-Activated Protein Kinases , Skin , Rats , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Rosuvastatin Calcium/pharmacology , Rosuvastatin Calcium/therapeutic use , Rosuvastatin Calcium/metabolism , Skin/pathology , Rats, Sprague-Dawley , TOR Serine-Threonine Kinases/metabolism , Autophagy
3.
Int Immunopharmacol ; 115: 109683, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36630751

ABSTRACT

Osteoarthritis (OA) is a joint disease that is characterized by articular cartilage degeneration and destruction. Stevioside (SVS) is a diterpenoid glycoside extracted from Stevia rebaudiana Bertoni with some specific effects against inflammatory and apoptotic, whereas it is still unclear what function SVS has in osteoarthritis. This study focuses on the anti-inflammatory and anti-apoptosis functions of SVS on chondrocytes induced by interleukin (IL)-1beta, and the role of SVS in an osteoarthritis model for mice. We can detect the production of inflammatory factors such as nitric oxide (NO) and prostaglandin E2 (PGE2) using real-time quantitative polymerase chain reaction (RT-qPCR), the Griess reaction, and enzyme linked immunosorbent assay (ELISA). On the basis of Western blot, we have observed the protein expressions of cartilage matrix metabolism, inflammatory factors, and apoptosis of chondrocytes. Simultaneously, the pharmacological effects of SVS in mice were evaluated by hematoxylin and eosin (HE), toluidine blue, Safranin O, and immunohistochemical staining. The results show that SVS slows extracellular matrix degradation and chondrocyte apoptosis. In addition, SVS mediates its cellular effect by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways. Meanwhile, molecular docking studies revealed that SVS has excellent binding capabilities to p65, extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The study suggests that SVS can be developed as a potential osteoarthritis treatment.


Subject(s)
Cartilage, Articular , Osteoarthritis , Mice , Animals , Chondrocytes , NF-kappa B/metabolism , Molecular Docking Simulation , Inflammation/drug therapy , Inflammation/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Cartilage, Articular/metabolism , Interleukin-1beta/metabolism
4.
Theranostics ; 13(2): 810-832, 2023.
Article in English | MEDLINE | ID: mdl-36632211

ABSTRACT

Background: Caloric restriction mimetics (CRMs) mimic the favourable effects of caloric restriction (CR) and have been shown to have therapeutic effects in neuroinflammatory disease. However, whether CRMs improve the functional recovery from spinal cord injury (SCI) and the underlying mechanism of action remain unclear. In this study, we used the CRMs 3,4-dimethoxychalcone (3,4-DC) to evaluate the therapeutic value of CRMs for SCI. Methods: HE, Masson and Nissl staining; footprint analysis; and the Basso mouse scale were used to determine the functional recovery from SCI after 3,4-DC treatment. RNA sequencing was used to identify the mechanisms of 3,4-DC in SCI. Western blotting, qPCR and immunofluorescence were used to detect the levels of pyroptosis, necroptosis, autophagy and the AMPK-TRPML1-calcineurin signalling pathway. We employed a dual-luciferase reporter assay in vitro and applied AAV vectors to inhibit TFEB in vivo to explore the mechanism of 3,4-DC. Results: 3,4-DC reduced glial scar area and motor neuron death and improved functional recovery after SCI. RNA-sequencing results indicated that oxidative stress, pyroptosis, necroptosis, and autophagy may be involved in the ability of 3,4-DC to improve functional recovery. Furthermore, 3,4-DC inhibited pyroptosis and necroptosis by enhancing autophagy. We also found that 3,4-DC enhances autophagy by promoting TFEB activity. A decrease in the TFEB level abolished the protective effect of 3,4-DC. In addition, 3,4-DC partially regulated TFEB activity through the AMPK-TRPML1-calcineurin signalling pathway. Conclusions: 3,4-DC promotes functional recovery by upregulating TFEB-mediated autophagy and inhibiting pyroptosis and necroptosis after SCI, which may have potential clinical application value.


Subject(s)
Caloric Restriction , Necroptosis , Pyroptosis , Spinal Cord Injuries , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Autophagy , Calcineurin/metabolism , Necroptosis/drug effects , Pyroptosis/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology
5.
J Neuroinflammation ; 20(1): 6, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36609266

ABSTRACT

Spinal cord injury (SCI) is a devastating injury that may result in permanent motor impairment. The active ingredients of medications are unable to reach the affected area due to the blood‒brain barrier. Elamipretide (SS-31) is a new and innovative aromatic cationic peptide. Because of its alternating aromatic and cationic groups, it freely crosses the blood‒brain barrier. It is also believed to decrease inflammation and protect against a variety of neurological illnesses. This study explored the therapeutic value of SS-31 in functional recovery after SCI and its possible underlying mechanism. A spinal cord contusion injury model as well as the Basso Mouse Scale, footprint assessment, and inclined plane test were employed to assess how well individuals could function following SCI. The area of glial scarring, the number of dendrites, and the number of synapses after SCI were confirmed by HE, Masson, MAP2, and Syn staining. Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays were employed to examine the expression levels of pyroptosis-, autophagy-, lysosomal membrane permeabilization (LMP)- and MAPK signalling-related proteins. The outcomes showed that SS-31 inhibited pyroptosis, enhanced autophagy and attenuated LMP in SCI. Mechanistically, we applied AAV vectors to upregulate Pla2g4A in vivo and found that SS-31 enhanced autophagy and attenuated pyroptosis and LMP by inhibiting phosphorylation of cPLA2. Ultimately, we applied asiatic acid (a p38-MAPK agonist) to test whether SS-31 regulated cPLA2 partially through the MAPK-P38 signalling pathway. Our group is the first to suggest that SS-31 promotes functional recovery partially by inhibiting cPLA2-mediated autophagy impairment and preventing LMP and pyroptosis after SCI, which may have potential clinical application value.


Subject(s)
Pyroptosis , Spinal Cord Injuries , Mice , Animals , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Lysosomes/metabolism , Phospholipases A2, Cytosolic/metabolism
6.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 7): o2159, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22798831

ABSTRACT

In the anion of the title mol-ecular salt, C(4)H(12)N(2) (2+)·C(11)H(10)O(6) (2-), the two acetate groups form torsion angles of 74.1 (1) and 7.1 (1)° with the central benzene ring, and the cation exhibits a chair conformation. In the crystal, N-H⋯O hydrogen bonds link the components into a two-dimensional supra-molecular network lying parallel to the ab plane. A number of C-H⋯O inter-actions consolidate the packing.

SELECTION OF CITATIONS
SEARCH DETAIL
...