Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Virol Sin ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38072230

ABSTRACT

Inclusion bodies (IBs) of respiratory syncytial virus (RSV) are formed by liquid-liquid phase separation (LLPS) and contain internal structures termed "IB-associated granules" (IBAGs), where anti-termination factor M2-1 and viral mRNAs are concentrated. However, the mechanism of IBAG formation and the physiological function of IBAGs are unclear. Here, we found that the internal structures of RSV IBs are actual M2-1-free viral messenger ribonucleoprotein (mRNP) condensates formed by secondary LLPS. Mechanistically, the RSV nucleoprotein (N) and M2-1 interact with and recruit PABP to IBs, promoting PABP to bind viral mRNAs transcribed in IBs by RNA-recognition motif and drive secondary phase separation. Furthermore, PABP-eIF4G1 interaction regulates viral mRNP condensate composition, thereby recruiting specific translation initiation factors (eIF4G1, eIF4E, eIF4A, eIF4B and eIF4H) into the secondary condensed phase to activate viral mRNAs for ribosomal recruitment. Our study proposes a novel LLPS-regulated translation mechanism during viral infection and a novel antiviral strategy via targeting on secondary condensed phase.

3.
Genome Biol ; 24(1): 49, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918913

ABSTRACT

BACKGROUND: The epidermis of cotton ovule produces fibers, the most important natural cellulose source for the global textile industry. However, the molecular mechanism of fiber cell growth is still poorly understood. RESULTS: Here, we develop an optimized protoplasting method, and integrate single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) to systematically characterize the cells of the outer integument of ovules from wild type and fuzzless/lintless (fl) cotton (Gossypium hirsutum). By jointly analyzing the scRNA-seq data from wildtype and fl, we identify five cell populations including the fiber cell type and construct the development trajectory for fiber lineage cells. Interestingly, by time-course diurnal transcriptomic analysis, we demonstrate that the primary growth of fiber cells is a highly regulated circadian rhythmic process. Moreover, we identify a small peptide GhRALF1 that circadian rhythmically controls fiber growth possibly through oscillating auxin signaling and proton pump activity in the plasma membrane. Combining with scATAC-seq, we further identify two cardinal cis-regulatory elements (CREs, TCP motif, and TCP-like motif) which are bound by the trans factors GhTCP14s to modulate the circadian rhythmic metabolism of mitochondria and protein translation through regulating approximately one third of genes that are highly expressed in fiber cells. CONCLUSIONS: We uncover a fiber-specific circadian clock-controlled gene expression program in regulating fiber growth. This study unprecedentedly reveals a new route to improve fiber traits by engineering the circadian clock of fiber cells.


Subject(s)
Cotton Fiber , Gossypium , Gene Expression Profiling , Phenotype , Gene Expression , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Plant Physiol ; 185(1): 179-195, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33631798

ABSTRACT

Long noncoding RNAs (lncRNAs) are crucial factors during plant development and environmental responses. To build an accurate atlas of lncRNAs in the diploid cotton Gossypium arboreum, we combined Isoform-sequencing, strand-specific RNA-seq (ssRNA-seq), and cap analysis gene expression (CAGE-seq) with PolyA-seq and compiled a pipeline named plant full-length lncRNA to integrate multi-strategy RNA-seq data. In total, 9,240 lncRNAs from 21 tissue samples were identified. 4,405 and 4,805 lncRNA transcripts were supported by CAGE-seq and PolyA-seq, respectively, among which 6.7% and 7.2% had multiple transcription start sites (TSSs) and transcription termination sites (TTSs). We revealed that alternative usage of TSS and TTS of lncRNAs occurs pervasively during plant growth. Besides, we uncovered that many lncRNAs act in cis to regulate adjacent protein-coding genes (PCGs). It was especially interesting to observe 64 cases wherein the lncRNAs were involved in the TSS alternative usage of PCGs. We identified lncRNAs that are coexpressed with ovule- and fiber development-associated PCGs, or linked to GWAS single-nucleotide polymorphisms. We mapped the genome-wide binding sites of two lncRNAs with chromatin isolation by RNA purification sequencing. We also validated the transcriptional regulatory role of lnc-Ga13g0352 via virus-induced gene suppression assay, indicating that this lncRNA might act as a dual-functional regulator that either activates or inhibits the transcription of target genes.


Subject(s)
Crops, Agricultural/genetics , Gene Expression Profiling/methods , Gossypium/growth & development , Gossypium/genetics , Regulatory Elements, Transcriptional , Sequence Analysis, RNA/methods , Transcription, Genetic/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant
5.
Development ; 148(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-35020876

ABSTRACT

The production and expansion of intermediate progenitors (IPs) are essential for neocortical neurogenesis during development and over evolution. Here, we have characterized an epigenetic circuit that precisely controls neurogenic programs, particularly properties of IPs, during neocortical development. The circuit comprises a long non-coding RNA (LncBAR) and the BAF (SWI/SNF) chromatin-remodeling complex, which transcriptionally maintains the expression of Zbtb20. LncBAR knockout neocortex contains more deep-layer but fewer upper-layer projection neurons. Intriguingly, loss of LncBAR promotes IP production, but paradoxically prolongs the duration of the cell cycle of IPs during mid-later neocortical neurogenesis. Moreover, in LncBAR knockout mice, depletion of the neural progenitor pool at embryonic stage results in fewer adult neural progenitor cells in the subventricular zone of lateral ventricles, leading to a failure in adult neurogenesis to replenish the olfactory bulb. LncBAR binds to BRG1, the core enzymatic component of the BAF chromatin-remodeling complex. LncBAR depletion enhances association of BRG1 with the genomic locus of, and suppresses the expression of, Zbtb20, a transcription factor gene known to regulate both embryonic and adult neurogenesis. ZBTB20 overexpression in LncBAR-knockout neural precursors reverses compromised cell cycle progressions of IPs.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Neurogenesis/genetics , RNA, Long Noncoding/genetics , Transcription Factors/genetics , Animals , Cell Cycle/genetics , Embryonic Development/genetics , Epigenesis, Genetic/genetics , Mice , Mice, Knockout , Neocortex/growth & development , Neocortex/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neuroglia/metabolism , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...