Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(9): 4830-4842, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38634812

ABSTRACT

We present m6ACali, a novel machine-learning framework aimed at enhancing the accuracy of N6-methyladenosine (m6A) epitranscriptome profiling by reducing the impact of non-specific antibody enrichment in MeRIP-Seq. The calibration model serves as a genomic feature-based classifier that refines the identification of m6A sites, distinguishing those genuinely present from those that can be detected in in-vitro transcribed (IVT) control experiments. We find that m6ACali effectively identifies non-specific binding peaks reported by exomePeak2 and MACS2 in novel MeRIP-Seq datasets without the need for paired IVT controls. The model interpretation revealed that off-target antibody binding sites commonly occur at short exons and short mRNAs, originating from high read coverage regions that share the motif sequence with true m6A sites. We also reveal that the ML strategy can efficiently adjust differentially methylated peaks and other antibody-dependent, base-resolution m6A detection techniques. As a result, m6ACali offers a promising method for the universal enhancement of m6A profiles generated by MeRIP-Seq experiments, elevating the benchmark for omics-level m6A data integration.


Subject(s)
Adenosine , Machine Learning , Sequence Analysis, RNA , Humans , Adenosine/analogs & derivatives , Calibration , Methylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA/methods , Transcriptome
2.
Nucleic Acids Res ; 52(D1): D194-D202, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37587690

ABSTRACT

N 6-Methyladenosine (m6A) is one of the most abundant internal chemical modifications on eukaryote mRNA and is involved in numerous essential molecular functions and biological processes. To facilitate the study of this important post-transcriptional modification, we present here m6A-Atlas v2.0, an updated version of m6A-Atlas. It was expanded to include a total of 797 091 reliable m6A sites from 13 high-resolution technologies and two single-cell m6A profiles. Additionally, three methods (exomePeaks2, MACS2 and TRESS) were used to identify >16 million m6A enrichment peaks from 2712 MeRIP-seq experiments covering 651 conditions in 42 species. Quality control results of MeRIP-seq samples were also provided to help users to select reliable peaks. We also estimated the condition-specific quantitative m6A profiles (i.e. differential methylation) under 172 experimental conditions for 19 species. Further, to provide insights into potential functional circuitry, the m6A epitranscriptomics were annotated with various genomic features, interactions with RNA-binding proteins and microRNA, potentially linked splicing events and single nucleotide polymorphisms. The collected m6A sites and their functional annotations can be freely queried and downloaded via a user-friendly graphical interface at: http://rnamd.org/m6a.


Subject(s)
Databases, Genetic , RNA Methylation , RNA, Messenger , Transcriptome , RNA Splicing , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA Processing, Post-Transcriptional
3.
Life Sci Alliance ; 6(11)2023 11.
Article in English | MEDLINE | ID: mdl-37684043

ABSTRACT

Prostate cancer (PCa) poses a significant health threat to males, and research has shown that fish oil (FO) can impede PCa progression by activating multiple mitochondria-related pathways. Our research is focused on investigating the impact of FO on succinylation, a posttranslational modification that is closely associated with mitochondria in PCa cells. This study employed a mass spectrometry-based approach to investigate succinylation in PCa cells. Bioinformatics analysis of these succinylated proteins identified glutamic-oxaloacetic transaminase 2 (GOT2) protein as a key player in PCa cell proliferation. Immunoprecipitation and RNA interference technologies validated the functional data. Further analyses revealed the significance of GOT2 protein in regulating nucleotide synthesis by providing aspartate, which is critical for the survival and proliferation of PCa cells. Our findings suggest that FO-dependent GOT2 succinylation status has the potential to inhibit building block generation. This study lays a solid foundation for future research into the role of succinylation in various biological processes. This study highlights the potential use of FO as a nutrition supplement for managing and slowing down PCa progression.


Subject(s)
Lysine , Prostatic Neoplasms , Male , Humans , Fish Oils/pharmacology , Prostate , Mitochondria
SELECTION OF CITATIONS
SEARCH DETAIL
...