Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 328: 117003, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36508975

ABSTRACT

Concentrating solar power (CSP) is considered as a promising renewable electricity source due to its superiority in providing dispatchable and base-load electricity. This study performs a systems process analysis to quantify the carbon emissions and nonrenewable energy costs induced by a state-of-art demonstration CSP plant located in the Tibetan plateau. Estimated to induce 111.2 g CO2 eq/kWh carbon emissions and 1.42 MJ/kWh non-renewable energy consumption, the CSP plant is considered to have extremely high carbon neutrality (88.8%) and energy renewability (86.4%). The prominent performance of carbon emissions reduction and energy conservation induced by the CSP plant shed light on its superiority of reliable power supply and environmental benefits. The plant is expected to cumulatively fulfill 3.4 million tons of carbon emissions reduction over its life cycle. In contrast to coal-based power and other renewable energy technologies, CSP technology is shown to be a promising solution to the low-carbon energy transition. Besides, a scenario analysis indicates that the incremental employment of CSP technologies will play a critical role in coping with climate change and energy security in China. Moreover, multiple policies to facilitate the development of the CSP system in China are elaborated, such as the promotion of integrated solar combined-cycle systems. The empirical finding draws a holistic picture of the carbon neutrality and energy sustainability performance of CSP technologies, and the systematic analysis in this study provides comprehensive policy perspectives for energy policy in the Tibetan region as well as in China in the context of global climate change.


Subject(s)
Solar Energy , Carbon , China , Policy , Power Plants , Carbon Dioxide/analysis
2.
J Environ Manage ; 290: 112659, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33894485

ABSTRACT

Low-carbon power generation has been proposed as the key to address climate change. However, the sustainability and ecological efficiency of the generating plants have not been fully understood. This study applies emergy analysis and systems accounting to a pilot solar power tower plant in China for the first time to elaborate its sustainable and ecological performances. Emergy analysis covers virtually all aspects of sustainability and ecological efficiency by considering different forms of materials inputs, environmental support and human labor on the same unit of "solar joule". The input-output analysis based systems accounting is applied to trace the complete emergy embodied in the supply chain for all product materials of the given plant against the back ground of complex economic network, which improved the accuracy of accounting. This analysis illustrated unexpectedly low sustainability and ecological efficiency of this particular plant compared with the emergy analysis based on the primary materials (steel, iron, cement, etc.). Purchased emergy responses more than 95% of the total and emergy input in the construction phase is more than twice as much as that in the operation phase. Comparisons with other kinds of clean energy technologies indicate previous studies may have overestimated the sustainability and ecological benefits of low-carbon power plants. Thus, it is necessary to establish this kind of unified accounting framework. In addition, sensitivity analysis suggests that strictly controlling monetary costs of purchased inputs, extending service lifetime and improving power generation efficiency can promote higher sustainability and ecological efficiency for solar power tower plants. This study provides a more comprehensive framework for quantitative emergy-based evaluation of the sustainability and ecological efficiency for low-carbon power systems.


Subject(s)
Conservation of Natural Resources , Solar Energy , Carbon , China , Ecosystem , Humans , Power Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...