Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Environ Manage ; 300: 113756, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34534758

ABSTRACT

The quality of heavy oil electric desalting wastewaters (HO-EDWs) affects the effectiveness of refinery wastewater treatment plants. In this study, an integrated coagulation-ozonation (ICO) process was used to pretreat HO-EDWs and the influences on the characteristics of dissolved organic pollutants (DOPs) were investigated. Coagulation using aluminum sulfate removed 39% of soluble chemical oxygen demand (SCOD), 21% of dissolved organic carbon (DOC), 57% of petroleum hydrocarbons and 38% of polar oils from Liaohe HO-EDWs and the biodegradability was greatly improved. Ozonation removed 33% of SCOD and 88% of polar oils from the coagulated HO-EDWs. Most species of aromatic compounds, phenols, aliphatic acids, anilines and naphthenic acids with high C numbers and ring numbers were degraded and the unsaturation degrees of DOPs significantly decreased under ozonation. As a result, the biodegradability was further improved and the acute toxicity towards Vibrio fischeri was substantially reduced. Some OxS1 species and organic nitrogen compounds in HO-EDWs were penetrated through ozonation and caused the residual biotoxicity. The results demonstrate the potential of ICO pretreatment for improving the quality of refractory HO-EDWs.


Subject(s)
Environmental Pollutants , Ozone , Water Pollutants, Chemical , Oils , Wastewater , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 264(Pt 2): 128531, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33065320

ABSTRACT

Highly polluted crude oil electric desalting wastewaters (EDWs) severely affect the efficiency of refinery wastewater treatment plants (WWTPs). Coagulation is an efficient pretreatment to reduce the impacts of EDWs. In the present study, the influences of coagulation pretreatment on the characteristics of EDWs of three typical Chinese crude oils, Liaohe heavy oil (LHO), Karamay heavy oil (KHO) and Daqing light oil (DLO), were investigated. The stability of three raw EDWs was broken and the contents of organic pollutants were significantly reduced by aluminum sulfate coagulation. More soluble COD and polar oils were removed from LHO-EDW (1241 and 98 mg L-1) and KHO-EDW (779 and 57 mg L-1) compared to DLO-EDW (417 and 11 mg L-1). Coagulation significantly changed the compositions of the organic pollutants of two heavy oil EDWs; however, slightly influenced DLO-EDW, particularly the polar organic pollutants. Most types of aromatic compounds, aliphatic acids and Ox polar compounds were removed from two heavy oil EDWs, but mainly alkanes were removed from DLO-EDW. As such, the differences in the types of dominant polar compounds became insignificant among treated heavy oil and light oil EDWs. Coagulation notably decreased the acute biotoxicity and improved the biodegradability of all treated EDWs. The residual organic nitrogen compounds in treated KHO-EDW contributed to a higher residual biotoxicity compared to treated LHO-EDW. The results demonstrate that coagulation can effectively improve the qualities of heavy oil EDWs by lowering the contents of organic pollutants and removing recalcitrant compounds, thus guaranteeing the efficiency of refinery WWTPs.


Subject(s)
Petroleum , Water Pollutants, Chemical , Petroleum/analysis , Wastewater , Water Pollutants, Chemical/analysis
3.
Environ Res ; 189: 109939, 2020 10.
Article in English | MEDLINE | ID: mdl-32980019

ABSTRACT

The efficiency of petrochemical wastewater biological treatment is dependent upon complex bacterial communities. A well understanding of the structure and function of bacterial community and their association with environmental variables is essential for the elucidation of contaminant removal mechanisms and optimization of wastewater treatment processes. In this study, the bacterial communities and metabolic functions in the primary hydrolysis acidification unit (PHAU), cyclic activated sludge system (CASS), secondary hydrolysis acidification unit (SHAU), and biological aerated filter (BAF) of a petrochemical wastewater treatment plant (WWTP) were studied via Illumina high-throughput sequencing. The correlations between bacterial community and environmental variables were also investigated. The phylum Proteobacteria, Planctomycetes, Chloroflexi, Acidobacteria and Bacteroidetes were dominant in the petroleum WWTP. The bacterial communities varied with wastewater characteristics and operational parameters, as a result of the differences in biosystems functions. Phylogenetic analysis showed that the genes involved in the degradation of benzoate, nitrotoluene and aminobenzoate degradation were abundant in PHAU, and the genes related to the degradation of benzoate, aminobenzoate, chloroalkane, chloroalkene, caprolactam, naphthalene and toluene were abundant in CASS, SHAU and BAF. The Redundancy analysis (RDA) suggested that biochemical oxygen demand (BOD5), NH4+-N and total nitrogen concentrations exhibited significant impacts in shaping the structure of bacterial community. Variance partitioning analysis (VPA) showed that 18.6% of the community variance was related to wastewater characteristics, higher than operational parameters of 4.5%. These results provide insight into microbial community structure and metabolic function during petrochemical wastewater treatment, and discern the relationships between bacterial community and environmental variables, which can provide basic data and a theoretical analysis of the design and operation optimization in petrochemical WWTP.


Subject(s)
Sewage , Water Purification , Bacteria/genetics , Bioreactors , Phylogeny , Waste Disposal, Fluid , Wastewater
4.
Sci Total Environ ; 724: 138117, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32247129

ABSTRACT

Large quantities of highly polluted point-source wastewaters (EDWs) are generated from electric desalting process of heavy oils (HOs), resulting in severe impacts on the efficiency of wastewater treatment plants in petroleum refineries. In the present study, a comprehensive chemical analysis and characterization of EDWs of two typical Chinese heavy oils, Liaohe heavy oil (LHO) and Karamy heavy oil (KHO), were investigated using Daqing light oil (DLO) as a control. The HO-EDWs (LHO-EDW and KHO-EDW) show high pollutants contents with complicated compositions, more polar dissolved organic pollutants (DOPs), strong emulsion stability and high acute biotoxicity towards Vibrio fischeri, compared to DLO-EDW. LHO-EDW and KHO-EDW have nearly equal pollutants contents but different compositions and distributions, where more types of DOPs exist in KHO-EDW. Large amounts of biologically recalcitrant aromatic compounds, as well as heteroatomic compounds such as CHO, CHOS and CHON species, extensively distribute in HO-EDWs. The organic nitrogen compounds (e.g., anilines and N2-3Ox, N1OxS1) in KHO-EDW most probably contribute to and thus leading to elevated levels of acute biotoxicity. Additionally, highly dispersed colloidal, micron-sized particles and polar compounds promote the emulsification and stabilization of HO-EDWs. These results can guide the development of pretreatment technologies for HO-EDWs, thus improving the treatment and management of heavy oil refineries' wastewater streams.

5.
Front Chem ; 7: 384, 2019.
Article in English | MEDLINE | ID: mdl-31214567

ABSTRACT

The discharge of wastewater having recalcitrant chemical compositions can have significant and adverse environmental effects. The present study investigates the application of a catalytic ozonation treatment for the removal of recalcitrant organic chemicals (ROCs) from the water. Novel catalytic materials using vanadium (V) oxides deposited onto the surface of NaZSM-5 zeolites (V/ZSM) were found to be highly efficient for this purpose. The highly-dispersed V oxides (V4+ and V5+) and Si-OH-Al framework structures were determined to promote the surface reaction and generation of hydroxyl radicals. The constructed V1/ZSM450 (0.7 wt% of V loading and 450°C of calcination) exhibited the highest activity among the developed catalyst compositions. The V1/ZSM450-COP increased the mineralization rate of nitrobenzene and benzoic acid by 50 and 41% in comparison to single ozonation. This study demonstrates the enhanced potential of V/ZSM catalysts used with catalytic ozonation process (COP) for the treatment of chemical wastewaters.

6.
Sci Total Environ ; 651(Pt 2): 2631-2640, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30463118

ABSTRACT

Large quantities of hazardous activated petroleum waste sludge and wastewaters are generated from petroleum refining. The present disposal of the sludge via incineration or landfill may cause secondary pollution as well as additional costs. Treatment of petroleum refinery wastewater (PRW) by catalytic ozonation process (COP) remains a great challenge of developing low-cost and high-efficiency catalysts. Use of waste sludge derived biochar as catalysts in COP of PRW not only solves the solid wastes and wastewaters problems but also improves profitability. The elements of carbon (C), silicon (Si) and metals originally found in activated petroleum waste sludge contribute to the formation of active sites during pyrolysis. The biochar contains functional C groups, SiO structures, and metallic oxides that promote oxidation through the formation of hydroxyl radicals (OHs) mineralizing petroleum contaminants. Catalytic ozonation of PRW using this sludge biochar (SBC) doubles the total organic carbon removal (53.5%) relative to single ozonation (26.9%). Oxygen (Ox)-, nitrogen (NOx)- and sulfur (OxS)-containing contaminants were decreased by 33.4% (989 vs 659), 58.2% (912 vs 384) and 12.5% (384 vs 336). The present study shows the potential of a "wastes-treat-wastes" process for wastewater treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...