Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Angew Chem Int Ed Engl ; : e202410900, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010737

ABSTRACT

MnO2 is commonly used as the cathode material for aqueous zinc-ion batteries (AZIBs). The strong Coulombic interaction between Zn ions and the MnO2 lattice causes significant lattice distortion and, combined with the Jahn-Teller effect, results in Mn2+ dissolution and structural collapse. While proton intercalation can reduce lattice distortion, it changes the electrolyte pH, producing chemically inert byproducts. These issues greatly affect the reversibility of Zn2+ intercalation/extraction, leading to significant capacity degradation of MnO2. Herein, we propose a novel method to enhance the cycling stability of δ-MnO2 through selenium doping (Se-MnO2). Our work indicates that varying the selenium doping content can regulate the intercalation ratio of H+ in MnO2, thereby suppressing the formation of ZnMn2O4 by-products. Se doping mitigates the lattice strain of MnO2 during Zn2+ intercalation/deintercalation by reducing Mn-O octahedral distortion, modifying Mn-O bond length upon Zn2+ insertion, and alleviating Mn dissolution caused by the Jahn-Teller effect. The optimized Se-MnO2 (Se concentration of 0.8 at.%) deposited on carbon nanotube demonstrates a notable capacity of 386 mAh g-1 at 0.1 A g-1, with exceptional long-term cycle stability, retaining 102 mAh g-1 capacity after 5000 cycles at 3.0 A g-1.

2.
J Colloid Interface Sci ; 674: 527-536, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38943913

ABSTRACT

Constructing unique heterostructures is a highly effective approach for enhancing the K+ storage capability of transition metal selenides. Such structures generate internal electric fields that significantly reduce the charge transfer activation energy. However, achieving a flawless interfacial region that maintains the optimal energy level gradient and degree of lattice matching remains a considerable challenge. In this study, we synthesised Setaria-like NiTe2/MoS2@C heterogeneous interfaces at which three-dimensional MoS2 nanosheets are evenly embedded in NiTe2 nanorods to form stabilised heterojunctions. The NiTe2/MoS2 heterojunctions display distinctive electronic configurations and several active sites owing to their low lattice misfits (δ = 13 %), strong electric fields, and uniform carbon shells. A NiTe2/MoS2@C anode in a potassium-ion battery (KIB) exhibited an impressive reversible capacity of 125.8 mAh/g after 1000 cycles at a rate of 500 mA g-1 and a stable reversible capacity of 111.7 mAh/g even after 3000 cycles at 1000 mA g-1. Even the NiTe2/MoS2@C//perylene tetracarboxylic dianhydride full battery configuration maintained a significant reversible capacity of 92.4 mAh/g after 100 cycles at 200 mA g-1, highlighting its considerable potential for application in KIBs. Calculations further revealed that the well-designed NiTe2/MoS2 heterojunction significantly promotes K+ ion diffusion.

3.
ACS Appl Mater Interfaces ; 16(22): 28391-28401, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768515

ABSTRACT

Vanadium oxide has been extensively studied as a host of zinc ion intercalation but still suffers from low conductivity, dissolution, and byproduct accumulation during cycling. Here, we hydrothermally synthesize the VO2@MXene Ti3C2 (MV) composite and find that in the MV//3 M Zn(CF3SO3)2//Zn system, the double hydroxide Zn12(CF3SO3)9(OH)15·nH2O (ZCOH) uniformly covers VO2 during the charging process and dissolves reversibly during the discharge process. In situ X-ray diffraction of the MV combined with in situ pH measurements reveals that ZCOH acts as a pH buffer during cycling, which is beneficial to the cycling stability of batteries. And the theoretical calculation indicates that the decomposition energy required by ZCOH on the MV surface is lower than that on pure VO2, which is more conducive to ZCOH dissolution. The coin battery exhibits high-rate performance of 65.1% capacity retention at a current density of 15 A g-1 (compared to 0.6 A g-1) and a long cycling life of 20,000 cycles with a capacity retention of 80.7%. For a 22.4 mA h soft-packaged battery, its capacity remains at 72.1% after 2000 cycles. This work demonstrates the active role of ZCOH in the electrochemical process of VO2 and provides a new perspective for exploiting this mechanism to develop high-performance aqueous zinc-ion battery vanadium oxide cathode materials.

4.
Development ; 151(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38603796

ABSTRACT

Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.


Subject(s)
Diapause , Nutrients , Animals , Female , Mice , Blastocyst/metabolism , Diapause/physiology , Embryonic Development/physiology
5.
RSC Adv ; 14(3): 1813-1821, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38192308

ABSTRACT

Carbon quantum dots (CQDs), as a new type of fluorescent nanomaterial, are widely used in the detection of small molecules. Abnormal dopamine secretion can lead to diseases such as Parkinson's disease and schizophrenia. Therefore, it is highly significant to detect dopamine levels in the human body. Using discarded fruit peels to prepare carbon quantum dots can achieve the reuse of kitchen waste, reduce pollution, and create value. Nitrogen-doped carbon quantum dots (N-CQDs) were prepared using the hydrothermal method, with orange peel as the raw material. The fluorescence quantum yield of N-CQDs reached a high value of 35.37% after optimizing the temperature, reaction time, and ethylenediamine dosage. N-CQDs were characterized using various techniques, including ultraviolet visible (UV-vis) spectroscopy, fluorescence spectrophotometer (PL), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). These analyses confirmed the successful doping of nitrogen in the CQDs. The DA concentration ranged from 0 to 300 µmol L-1, and the linear equation for fluorescence quenching of N-CQDs was F/F0 = -0.0056c + 0.98647, with an R2 value of 0.99071. The detection limit was 0.168 µmol L-1. The recovery and precision of dopamine in rabbit serum were 98% to 103% and 2% to 6%, respectively. The prepared N-CQDs could be used as a fluorescent probe to effectively detect DA.

6.
J Colloid Interface Sci ; 659: 21-30, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38157723

ABSTRACT

Lithium metal is an attractive and promising anode material due to its high energy density and low working potential. However, the uncontrolled growth of lithium dendrites during repeated plating and stripping processes hinders the practical application of lithium metal batteries, leading to low Coulombic efficiency, poor lifespan, and safety concerns. In this study, we synthesized highly lithiophilic and conductive Ag nanoparticles decorated on SiO2 nanospheres to construct an optimized lithium host for promoting uniform Li deposition. The Ag nanoparticles not only act as lithiophilic sites but also provide high electrical conductivity to the Ag@SiO2@Ag anode. Additionally, the SiO2 layer serves as a lithiophilic nucleation agent, ensuring homogeneous lithium deposition and suppressing the growth of lithium dendrites. Theoretical calculations further confirm that the combination of Ag nanoparticles and SiO2 effectively enhances the adsorption ability of Ag@SiO2@Ag with Li+ ions compared to pure Ag and SiO2 materials. As a result, the Ag@SiO2@Ag coating, with its balanced lithiophilicity and conductivity, demonstrates excellent electrochemical performance, including high Coulombic efficiency, low polarization voltage, and long cycle life. In a full lithium metal cell with LiFePO4 cathode, the Ag@SiO2@Ag anode exhibits a high capacity of 133.1 and 121.4 mAh/g after 200 cycles at rates of 0.5 and 1C, respectively. These results highlight the synergistic coupling of lithiophilicity and conductivity in the Ag@SiO2@Ag coating, providing valuable insights into the field of lithiophilic chemistry and its potential for achieving high-performance batteries in the next generation.

7.
Small ; : e2309523, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072626

ABSTRACT

The separator located between the positive and negative electrodes not only provides a lithium-ion transmission channel but also prevents short circuits for direct contact of electrodes. The inferior dimension thermostability of commercial polyolefin separators intensifies the thermal runaway of batteries under abuse such as short circuits, overcharge, and so on. a polyvinylidene fluoride/polyether imide (PVDF/PEI) separator with high thermal stability in which the high thermostable PEI microspheres are evenly dispersed in the PVDF film matrix and also located in the micro holes of the PVDF film is developed. They not only function as strong skeleton that enables the rare shrink of the separator at 200 °C avoiding short circuit but also act as ball valve that blocks the lithium ion transmission channel at 150 °C interrupting the further heat aggregation. Thus, the LiNi0.6 Co0.2 Mn0.2 O2 /Li batteries exhibit high cycle stability of 96.5% capacity retention after 100 cycles at 0.2C and 80°C. Further, the LiNi0.6 Co0.2 Mn0.2 O2 /graphite pouch cells are constructed and deliver good safety performance without smoke release and catching fire after the nail penetration test.

8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(10): 1241-1245, 2023 Oct 10.
Article in Chinese | MEDLINE | ID: mdl-37730224

ABSTRACT

OBJECTIVE: To explore the laboratory phenotype and molecular pathogenesis in a Chinese pedigree affected with Hereditary coagulation factor Ⅻ (FⅫ) deficiency. METHODS: A male proband admitted to Ningbo No.2 Hospital on July 17, 2021 due to chronic gastritis and members of his pedigree (7 individuals from three generations) were selected as the study subjects. Prothrombin time (PT), activated partial thromboplastin time (APTT), FⅧ activity (FⅧ: C), FⅨ activity (FⅨ: C), FⅪ activity (FⅪ: C), FⅫ activity (FⅫ: C), and FⅫ antigen (FⅫ: Ag) were determined. All of the exons, exon-intronic boundaries, as well as the 5'- and 3'-untranslated regions of the F12 gene were subjected to Sanger sequencing. Candidate variants were verified by cloning sequencing. The effect of candidate variants on the protein function was analyzed by bioinformatics software. RESULTS: The proband, a 47-year-old male, had significantly prolonged APTT (180.0 s) and decreased FⅫ:C and FⅫ:Ag levels (< 1%). His father, mother, brother and two sons also showed certain degrees of reduction. Genetic testing revealed that the proband has harbored compound heterozygous variants of the F12 gene, namely c.1092_1093insC (p.Lys365Glnfs*69) in exon 10 and c.1792_1796delGTCTA (p.Val579Hisfs*32) in exon 14. His mother and elder son were heterozygous for the c.1092_1093ins variant, whilst his father, brother, and younger son were heterozygous for the c.1792_1796delGTCTA variant. Analysis of the promoter region of exon 1 also showed that the proband and both sons had harbored a 46T/T polymorphism, whilst other family members were 46C/T. Bioinformatic analysis suggested that the p.Val579 is a highly conserved site. Protein model analysis showed that, with the p.Val579Hisfs*32 variant, a benzene ring was added and the hydrogen bond of surrounding amino acids was changed. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.1792_1796delGTCTA was classified as a pathogenic variant (PVS1+PM2_Supporting+PM4). CONCLUSION: The c.1092_1093insC (p.Lys365Glnfs*69) and c.1792_1796delGTCTA (p.Val579Hisfs*32) compound heterozygous variants of the F12 gene probably underlay the decreased FXII levels in this pedigree. Above finding has also enriched the mutational spectrum for FⅫ deficiency.


Subject(s)
East Asian People , Factor XII Deficiency , Male , Humans , Aged , Middle Aged , Pedigree , Exons , Introns , Family , Factor XII Deficiency/genetics , 3' Untranslated Regions , Factor XII/genetics
9.
World J Clin Cases ; 11(21): 5063-5072, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37583861

ABSTRACT

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, traditional teaching methods were disrupted and online teaching became a new topic in education reform and informatization. In this context, it is important to investigate the necessity and effectiveness of online teaching methods for medical students. This study explored stomatology education in China to evaluate the development and challenges facing the field using massive open online courses (MOOCs) for oral medicine education during the pandemic. AIM: To investigate the current situation and challenges facing stomatology education in China, and to assess the necessity and effectiveness of online teaching methods among medical students. METHODS: Online courses were developed and offered on personal computers and mobile terminals. Behavioral analysis and formative assessments were conducted to evaluate the learning status of students. RESULTS: The results showed that most learners had already completed MOOCs and achieved better results. Course behavior analysis and student surveys indicated that students enjoyed the learning experience. However, the development of oral MOOCs during the COVID-19 pandemic faced significant challenges. CONCLUSION: This study provides insights into the potential of using MOOCs to support online professional learning and future teaching innovation, but emphasizes the need for careful design and positive feedback to ensure their success.

10.
World J Stem Cells ; 15(6): 589-606, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37424952

ABSTRACT

BACKGROUND: Accumulating evidence suggests that the maxillary process, to which cranial crest cells migrate, is essential to tooth development. Emerging studies indicate that Cd271 plays an essential role in odontogenesis. However, the underlying mechanisms have yet to be elucidated. AIM: To establish the functionally heterogeneous population in the maxillary process, elucidate the effects of Cd271 deficiency on gene expression differences. METHODS: p75NTR knockout (Cd271-/-) mice (from American Jackson laboratory) were used to collect the maxillofacial process tissue of p75NTR knockout mice, and the wild-type maxillofacial process of the same pregnant mouse wild was used as control. After single cell suspension, the cDNA was prepared by loading the single cell suspension into the 10x Genomics Chromium system to be sequenced by NovaSeq6000 sequencing system. Finally, the sequencing data in Fastq format were obtained. The FastQC software is used to evaluate the quality of data and CellRanger analyzed the data. The gene expression matrix is read by R software, and Seurat is used to control and standardize the data, reduce the dimension and cluster. We search for marker genes for subgroup annotation by consulting literature and database; explore the effect of p75NTR knockout on mesenchymal stem cells (MSCs) gene expression and cell proportion by cell subgrouping, differential gene analysis, enrichment analysis and protein-protein interaction network analysis; understand the interaction between MSCs cells and the differentiation trajectory and gene change characteristics of p75NTR knockout MSCs by cell communication analysis and pseudo-time analysis. Last we verified the findings single cell sequencing in vitro. RESULTS: We identified 21 cell clusters, and we re-clustered these into three subclusters. Importantly, we revealed the cell-cell communication networks between clusters. We clarified that Cd271 was significantly associated with the regulation of mineralization. CONCLUSION: This study provides comprehensive mechanistic insights into the maxillary- process-derived MSCs and demonstrates that Cd271 is significantly associated with the odontogenesis in mesenchymal populations.

11.
Front Cell Infect Microbiol ; 13: 1169500, 2023.
Article in English | MEDLINE | ID: mdl-37346031

ABSTRACT

Kidney transplantation is an effective method to improve the condition of patients with end-stage renal disease. The gut microbiota significantly affects the immune system and can be used as an influencing factor to change the prognoses of patients who have undergone kidney transplantation. Recipients after kidney transplantation showed a lower abundance of Firmicutes and Faecalibacterium prausnitzii and a higher proportion of Bacteroidetes and Proteobacteria. After using prebiotics, synbiotics, and fecal microbiota transplantation to regulate the microbial community, the prognoses of patients who underwent kidney transplantation evidently improved. We aimed to determine the relationship between gut microbiota and various postoperative complications inpatients who have undergone kidney transplantation in recent years and to explore how gut microecology affects post-transplant complications. An in-depth understanding of the specific functions of gut microbiota and identification of the actual pathogenic flora during complications in patients undergoing kidney transplantation can help physicians develop strategies to restore the normal intestinal microbiome of transplant patients to maximize their survival and improve their quality of life.


Subject(s)
Gastrointestinal Microbiome , Kidney Transplantation , Microbiota , Humans , Kidney Transplantation/adverse effects , Gastrointestinal Microbiome/physiology , Quality of Life , Fecal Microbiota Transplantation
12.
Front Psychiatry ; 14: 1159785, 2023.
Article in English | MEDLINE | ID: mdl-37234217

ABSTRACT

Introduction: Depression is a common mental disorder worldwide. The pathology of depression may involve the dysregulation of neurotransmitters and immunity and produce genetic and environmental effects. Traditional Chinese Medicine (TCM) has been practiced for several thousand years and has a different understanding of depression compared to Western medicine. However, this approach has not been widely accepted by scientific communities as TCM mainly focuses on clinical practice. Methods: In this study, we conducted a cross-sectional study among 100 participants in a rehabilitation hospital to analyze the plausible pathways linking TCM-based liver function and depression, which we hypothesized in a prior theoretical review. Results: A significant relationship between adrenocorticotropic hormone and TCM-based liver function was found (r = 0.211, p = 0.041). Cortisol was significantly associated with norepinephrine (r = 0.243, p = 0.015) and adrenocorticotropic hormone (r = 0.302, p < 0.001). A positive significant relationship was also found between norepinephrine and adrenocorticotropic hormone (r = 0.272, p < 0.001). There was no significant relationship between the ratio from low frequency to high frequency and TCM-based liver function (p = 0.690). Discussion: These results suggest that TCM-based liver function can be interpreted using the hypothalamic-pituitary-adrenal axis. This is a pioneering study to examine the mechanisms of depression in relation to liver function by integrating Eastern and Western medical approaches. The findings of this study are valuable for a deeper understanding of depression and public education.

13.
Anal Chem ; 95(8): 4104-4112, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36688529

ABSTRACT

Significant progress has been made in nanomaterial-modified electrodes for highly efficient electroanalysis of arsenic(III) (As(III)). However, the modifiers prepared using some physical methods may easily fall off, and active sites are not uniform, causing the potential instability of the modified electrode. This work first reports a promising practical strategy without any modifiers via utilizing only soluble Fe3+ as a trigger to detect trace-level As(III) in natural water. This method reaches an actual detection limit of 1 ppb on bare glassy carbon electrodes and a sensitivity of 0.296 µA ppb-1 with excellent stability. Kinetic simulations and experimental evidence confirm the codeposition mechanism that Fe3+ is preferentially deposited as Fe0, which are active sites to adsorb As(III) and H+ on the electrode surface. This facilitates the formation of AsH3, which could further react with Fe2+ to produce more As0 and Fe0. Meanwhile, the produced Fe0 can also accelerate the efficient enrichment of As0. Remarkably, the proposed sensing mechanism is a general rule for the electroanalysis of As(III) that is triggered by iron group ions (Fe2+, Fe3+, Co2+, and Ni2+). The interference analysis of coexisting ions (Cu2+, Zn2+, Al3+, Hg2+, Cd2+, Pb2+, SO42-, NO3-, Cl-, and F-) indicates that only Cu2+, Pb2+, and F- showed inhibitory effects on As(III) due to the competition of active sites. Surprisingly, adding iron power effectively eliminates the interference of Cu2+ in natural water, achieving a higher sensitivity for 1-15 ppb As(III) (0.487 µA ppb-1). This study provides effective solutions to overcome the potential instability of modified electrodes and offers a practical sensing platform for analyzing other heavy-metal anions.

14.
Small ; 18(44): e2203347, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36108140

ABSTRACT

Although rechargeable zinc-ion batteries are promising candidates for next-generation energy storage devices, their inferior performance at subzero temperatures limits their practical application. Here, a strategy to destroy the H-bond network by adding synergistic chaotropic regents is reported, thus reducing the freezing point of the aqueous electrolyte below -90 °C. Owing to the synergistic chaotropic effect between urea and Zn(ClO4 )2 and the thermal release effect on the cathode interface during charging, Zn//VO2 batteries feature a specific capacity of 111.4 mAh g-1 and stability after ≈1000 cycles with 81.9% capacity retention at -40 °C. This work demonstrates that the synergistic chaotropic effect and the thermal effect on the interface can effectively widen the operation range of temperature of aqueous electrolytes and maintain fast kinetics, which provides a new design strategy for all-weather aqueous zinc batteries.

15.
J Nanobiotechnology ; 20(1): 356, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918726

ABSTRACT

BACKGROUND: Due to their prevalence, dental caries ranks first among all diseases endangering human health. Therefore, the prevention of caries is of great significance, as caries have become a serious public health problem worldwide. Currently, using nanoscale drug delivery systems to prevent caries has received increased attention. However, the preventive efficacy of these systems is substantially limited due to the unique physiological structure of cariogenic biofilms. Thus, novel strategies aimed at combating cariogenic biofilms to improve preventive efficiency against caries are meaningful and very necessary. Herein, inspired by cell membrane coating technology and Lactobacillus strains, we coated triclosan (TCS)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TCS@PLGA-NPs) with an envelope of Lactobacillus (LA/TCS@PLGA-NPs) and investigated their potential as a nanoparticle delivery system against cariogenic biofilms and dental caries. RESULTS: LA/TCS@PLGA-NPs were successfully prepared with favorable properties, including a coated envelope, controllable size, negative charge, sustained drug-release kinetics and so on. The LA/TCS@PLGA-NPs inherited native properties from the source cell surface, thus the LA/TCS@PLGA-NPs adhered to S. mutans, integrated into the S. mutans biofilm, and interfered with the biofilm formation of S. mutans. The nanoparticles significantly inhibited the activity, biomass and virulence gene expression of S. mutans biofilms in vitro. Additionally, LA/TCS@PLGA-NPs exhibited a long-lasting inhibitory effect on the progression of caries in vivo. The safety performance of the nanoparticles is also favorable. CONCLUSIONS: Our findings reveal that the antibiofilm effect of LA/TCS@PLGA-NPs relies not only on the inheritance of native properties from the Lactobacillus cell surface but also on the inhibitory effect on the activity, biomass and virulence of S. mutans biofilms. Thus, these nanoparticles could be considered feasible candidates for a new class of effective drug delivery systems for the prevention of caries. Furthermore, this work provides new insights into cell membrane coating technology and presents a novel strategy to combat bacterial biofilms and associated infections.


Subject(s)
Dental Caries , Nanoparticles , Anti-Bacterial Agents/pharmacology , Biofilms , Cell Membrane , Dental Caries/drug therapy , Dental Caries/prevention & control , Humans , Lactobacillus , Streptococcus mutans
16.
BMC Pregnancy Childbirth ; 22(1): 624, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933360

ABSTRACT

OBJECTIVES: To evaluate pelvic floor muscle strength using surface electromyography and risk factors for pelvic floor muscle strength in the early postpartum period. METHODS: This retrospective study included 21,302 participants who visited Fujian Maternity and Child Health Hospital from September 2019 to February 2022. All participants were assessed by medical professionals for general information and surface electromyography. RESULTS: Univariate analysis indicated that age was inversely related to tonic and endurance contractions. In contrast, all the other variables, including education level, body mass index, neonatal weight, and number of fetuses, had a positive impact on rapid, tonic, and endurance contractions. Likewise, parity was also positively associated with rapid contractions. In addition, compared with vaginal delivery, cesarean section delivery had a protective effect on the amplitude of the three types of contractions. Stepwise regression analysis showed that both age and neonatal weight had a negative linear relationship with the amplitude of rapid, tonic and endurance contractions. In contrast, the amplitude of rapid, tonic and endurance contractions significantly increased as body mass index, parity (≤ 3), education level and gestational weight gain (endurance contractions only) increased. Participants with cesarean section delivery showed positive effects on rapid, tonic, and endurance contractions compared to participants with vaginal delivery. CONCLUSIONS: We found that age, neonatal weight, vaginal delivery, episiotomy, and forceps delivery were risk factors for pelvic floor muscle strength; in contrast, body mass index, parity (≤ 3) and gestational weight gain had a positive relationship with pelvic floor muscle strength.


Subject(s)
Gestational Weight Gain , Pelvic Floor , Cesarean Section/adverse effects , Child , China , Female , Humans , Infant, Newborn , Muscle Contraction , Muscle Strength/physiology , Pregnancy , Retrospective Studies , Risk Factors
17.
Nanoscale ; 14(32): 11655-11663, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35904465

ABSTRACT

Monoclinic B phase VO2 with a distinctive tunnel structure is regarded as a viable cathode material for use in aqueous zinc ion batteries (AZIBs). However, the low electron conductivity and poor rate performance prevent it from being used further. Herein, we report 3D flower-like MXene nanosheets loaded with the VO2 cluster (MXene@VO2) synthesized via a one-step hydrothermal process, where MXene nanosheets were spontaneously stacked as a skeleton for the growth of VO2 nanobelts. The synergistic effect between MXene nanosheets with high electronic conductivity and VO2 nanobelts with a unique tunnel structure benefitted the electron and Zn2+ transport; the 3D hybrid structure with a high specific surface area provided an increased contact area with the electrolyte and a shortened distance of the Zn2+ transfer path. As a result, this material exhibits a promising Zn2+ storage behavior with a superior rate capability (363.2 mA h g-1 at 0.2C and 169.1 mA h g-1 at 50C) and outstanding long-cycling performance (206.6 mA h g-1 and 76% capacity retention over 5000 cycles at 20C). In addition, a self-charging battery could be prepared by using oxygen in air to oxidize vanadium oxide with lower valence states. Our prepared MXene@VO2 composite with a synergistic effect has been proved to be a promising cathode for AZIBs, offering a progressive paradigm for the development of AZIBs.

18.
J Transl Med ; 20(1): 185, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468852

ABSTRACT

BACKGROUND: Microlbuminuria is the earliest clinical evidence of diabetic kidney disease (DKD) and contributes to the induction and/or progression of DKD. Previous studies have shown that increased expression of angiopoietin2 (ANGPT2) is correlated with an increase in albuminuria. However, the critical role of ANGPT2 in albuminuria development remains unclear. Some studies have shown the significance of transcytosis in the occurrence of albuminuria, but it is unknown whether it takes place in albumin recycling in renal tubular cells of patients with DKD. Furthermore, the potential mechanism of this association also remains unclear. METHODS: In this study, human renal tubular epithelial cells (HK-2) were cultured with high glucose in a Transwell plate to establish a transcytosis model, while C57BL/6 mice were intraperitoneally injected with streptozotocin to establish a DKD model. The expression of ANGPT2 and caveolin1 (CAV1) phosphorylation was dectected through immunohistochemistry and western blot analysis. RESULTS: Transcytosis of albumin in renal tubular epithelial cells was downregulated after high glucose exposure, and increased expression of ANGPT2 and CAV1 phosphorylation both in vivo and in vitro was observed. Inhibition of ANGPT2 and CAV1 independently promoted transcytosis. Furthermore, ANGPT2 downregulation inhibited CAV1 phosphorylation, whereas CAV1 phosphorylation had no effect on the expression of ANGPT2. CONCLUSIONS: ANGPT2 reduces albumin transcytosis across renal tubular epithelial cells under high glucose conditions by activating CAV1 phosphorylation, thus increasing albuminuria in DKD. These findings suggested that ANGPT2 and CAV1 may be promising therapeutic targets for albuminuria in DKD.


Subject(s)
Albuminuria , Transcytosis , Albumins/metabolism , Albuminuria/complications , Animals , Epithelial Cells/metabolism , Female , Glucose/metabolism , Glucose/toxicity , Humans , Male , Mice , Mice, Inbred C57BL , Phosphorylation
19.
Small ; 17(36): e2101881, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34312985

ABSTRACT

The application of Li metal anodes is currently hindered by the uncontrolled growth of Li dendrites. Herein, the effects of a modified separator with a high Li+ transference number (t+ ) on the structure and electrochemical performance of Li metal anodes are reported. Stable and dendrite-free plating/stripping cycles are achieved under current densities up to 5 mA cm-2 and areal capacities up to 20 mAh cm-2 . The uniformly grown Li grains under the high t+ environment also exhibit well-defined textures (preferred orientations). At a low plating capacity, epitaxial growth takes place on the {100} textures already existing in the rolled Li foils and the uniform Li+ flux strengthens this preferred orientation. Increasing the plating capacity to 20 mAh cm-2 , the later-grown textures change to {110} due to the reduced space charges and alleviated transport limits of Li+ under the high t+ environment, which favor the exposure of the close-packed {110} planes. Compression-induced <111> fiber textures are also resolved and the content increases with the plating capacity. Identification of the textures is meaningful for the exploration of advanced epitaxial substrates beyond Cu foils for high-energy-density Li metal batteries. LiS pouch cells are finally evaluated for the potential application of the modified separator.

20.
J Biophotonics ; 14(7): e202100001, 2021 07.
Article in English | MEDLINE | ID: mdl-33856738

ABSTRACT

Expansion microscopy has enabled super resolution imaging of biological samples. The accurate measurement of expansion factor and distortion typically requires locating and imaging the same region of interest in the sample before and after expansion, which is often time-consuming to achieve. Here we introduce a convenient method for relocation by utilizing isolated porcine glomeruli as landmarks during expansion. Following heat denaturation and proteinase K digestion protocols, the glomeruli exhibit expansion factor of 3.5 to 4 (only 7%-16% less expanded than the hydrogel), and 1% to 2% of relative distortion. Due to its appropriate size of 100 to 300 µm, the location of the glomerulus in the sample are visible to eyes, while its detailed shape only requires bright field microscopy. For expansion factors ranging from 3 to 10, the region in the vicinity of the glomerulus can be easily re-identified, and sometimes allows quantification of expansion factor and distortion under bright field without fluorescent labels.


Subject(s)
Hydrogels , Microscopy , Animals , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...