Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Talanta ; 278: 126464, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38936106

ABSTRACT

Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.

2.
J Plant Physiol ; 274: 153721, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35597107

ABSTRACT

Methyl jasmonate (MeJA) is an airborne hormonal elicitor that induces a fast rise of emissions of characteristic stress marker compounds methanol and green leaf volatiles (GLV), and a longer-term release of volatile terpenoids, but there is limited information of how terpene emissions respond to MeJA in terpene-storing species. East-Indian lemongrass (Cymbopogon flexuosus), an aromatic herb with a large terpenoid storage pool in idioblasts, was used to investigate the short- (0-1 h) and long-term (1-16 h) responses of leaf net assimilation rate (A), stomatal conductance (Gs) and volatile emissions to MeJA concentrations ranging from moderate to lethal. Both A and Gs were increasingly inhibited with increasing MeJA concentration in both short and long term. MeJA exposure resulted in a rapid elicitation, within 1 h after exposure, of methanol and GLV emissions. Subsequently, a secondary rise of GLV emissions was observed, peaking at 2 h after MeJA exposure for the highest and at 8 h for the lowest application concentration. The total amount and maximum emission rate of methanol and the first and second GLV emission bursts were positively correlated with MeJA concentration. Unexpectedly, no de novo elicitation of terpene emissions was observed through the experiment. Although high MeJA application concentrations led to visible lesions and desiccation in extensive leaf regions, this did not result in breakage of terpene-storing idioblasts. The study highlights an overall insensitivity of lemongrass to MeJA and indicates that differently from mechanical wounding, MeJA-driven cellular death does not break terpene-storing cells. Further studies are needed to characterize the sensitivity of induced defense responses in species with strongly developed constitutive defenses.


Subject(s)
Cymbopogon , Volatile Organic Compounds , Acetates/pharmacology , Cyclopentanes/pharmacology , Methanol , Oxylipins/pharmacology , Plant Leaves , Poaceae , Terpenes
3.
Plant Signal Behav ; 16(7): 1917169, 2021 07 03.
Article in English | MEDLINE | ID: mdl-33879022

ABSTRACT

Exogenous application of methyl jasmonate (MeJA) has been extensively used to study jasmonate-dependent signaling events triggered by biotic stresses. MeJA application leads to complex jasmonate-dependent physiological responses, including changes in stomatal openness and induction of emissions of a multitude of volatile compounds. Whether the alterations in stomatal conductance and emissions of MeJA-induced volatiles are quantitatively associated with MeJA dose, and whether the induced volatile emissions are regulated by modifications in stomatal conductance had been poorly known until recently. Our latest studies highlighted a biphasic kinetics of jasmonate-dependent volatile emissions induced by MeJA treatment in the model species cucumber (Cucumis sativus), indicating induction of an immediate stress response and subsequent gene-expression level response. Both the immediate and delayed responses were MeJA dose-dependent. The studies further demonstrated that stomata modulated the kinetics of emissions of water-soluble volatiles in a MeJA dose-dependent manner. These studies contribute to understanding of plant short- and long-term responses to different biotic stress severities as simulated by treatments with a range of MeJA doses corresponding to mild to acute stress.


Subject(s)
Acetates/pharmacology , Cucumis sativus/drug effects , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Photosynthesis/drug effects , Plant Stomata/physiology , Cucumis sativus/physiology , Dose-Response Relationship, Drug , Kinetics , Stress, Physiological , Volatile Organic Compounds/metabolism
4.
Tree Physiol ; 41(7): 1122-1142, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33367874

ABSTRACT

Highly host-specific eriophyoid gall- and erineum-forming mites infest a limited range of broadleaf species, with the mites from the genus Eriophyes particularly widespread on Alnus spp. and Tilia spp. Once infected, the infections can be massive, covering a large part of leaf area and spreading through the plant canopy, but the effects of Eriophyes mite gall formation on the performance of host leaves are poorly understood. We studied the influence of three frequent Eriophyes infections, E. inangulis gall-forming mites on Alnus glutinosa, and E. tiliae gall-forming and E. exilis erineum-forming mites on Tilia cordata, on foliage morphology, chemistry, photosynthetic characteristics, and constitutive and induced volatile emissions. For all types of infections, leaf dry mass per unit area, net assimilation rate per area and stomatal conductance strongly decreased with increasing severity of infection. Mite infections resulted in enhancement or elicitation of emissions of fatty acid-derived volatiles, isoprene, benzenoids and carotenoid breakdown products in an infection severity-dependent manner for all different infections. Monoterpene emissions were strongly elicited in T. cordata mite infections, but these emissions were suppressed in E. inangulis-infected A. glutinosa. Although the overall level of mite-induced emissions was surprisingly low, these results highlight the uniqueness of the volatile profiles and offer opportunities for using volatile fingerprints and overall emission rates to diagnose infections by Eriophyes gall- and erineum-forming mites on temperate trees and assess their impact on the physiology of the affected trees.


Subject(s)
Alnus , Mites , Animals , Photosynthesis , Plant Leaves , Tilia , Trees
5.
Int J Mol Sci ; 21(3)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033119

ABSTRACT

Treatment by volatile plant hormone methyl jasmonate (MeJA) leads to release of methanol and volatiles of lipoxygenase pathway (LOX volatiles) in a dose-dependent manner, but how the dose dependence is affected by stomatal openness is poorly known. We studied the rapid (0-60 min after treatment) response of stomatal conductance (Gs), net assimilation rate (A), and LOX and methanol emissions to varying MeJA concentrations (0.2-50 mM) in cucumber (Cucumis sativus) leaves with partly open stomata and in leaves with reduced Gs due to drought and darkness. Exposure to MeJA led to initial opening of stomata due to an osmotic shock, followed by MeJA concentration-dependent reduction in Gs, whereas A initially decreased, followed by recovery for lower MeJA concentrations and time-dependent decline for higher MeJA concentrations. Methanol and LOX emissions were elicited in a MeJA concentration-dependent manner, whereas the peak methanol emissions (15-20 min after MeJA application) preceded LOX emissions (20-60 min after application). Furthermore, peak methanol emissions occurred earlier in treatments with higher MeJA concentration, while the opposite was observed for LOX emissions. This difference reflected the circumstance where the rise of methanol release partly coincided with MeJA-dependent stomatal opening, while stronger stomatal closure at higher MeJA concentrations progressively delayed peak LOX emissions. We further observed that drought-dependent reduction in Gs ameliorated MeJA effects on foliage physiological characteristics, underscoring that MeJA primarily penetrates through the stomata. However, despite reduced Gs, dark pretreatment amplified stress-volatile release upon MeJA treatment, suggesting that increased leaf oxidative status due to sudden illumination can potentiate the MeJA response. Taken together, these results collectively demonstrate that the MeJA dose response of volatile emission is controlled by stomata that alter MeJA uptake and volatile release kinetics and by leaf oxidative status in a complex manner.


Subject(s)
Acetates/pharmacology , Cucumis sativus/drug effects , Cucumis sativus/physiology , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Plant Leaves/physiology , Plant Stomata/physiology , Stress, Physiological/physiology , Volatile Organic Compounds/metabolism , Cucumis sativus/metabolism , Methanol/pharmacology , Osmosis/drug effects , Oxidation-Reduction/drug effects , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Stomata/drug effects , Plant Stomata/metabolism , Stress, Physiological/drug effects
6.
Trees (Berl West) ; 33(1): 37-51, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31700201

ABSTRACT

Poplar spiral gall aphid (Pemphigus spyrothecae) forms galls on the petiole in poplars (Populus) and mass infestations are frequent in poplar stands, but how these parasite gall infestations can affect the leaf lamina structure, photosynthetic rate and constitutive and stress volatile emissions is unknown. We investigated how the infestation by the petiole gall aphids affects lamina photosynthetic characteristics (net assimilation rate, stomatal conductance), C and N contents, and constitutive isoprene and induced volatile emissions in Populus × petrovskiana. The dry gall mass per leaf dry mass (M g/M l) was used as a quantitative measure of the severity of gall infestation. Very high fraction of leaf biomass was invested in gall formation with M g/M l varying between 0.5-2. Over the whole range of the infestation severities, net assimilation rate per area, leaf dry mass per unit area and N content decreased with increasing the severity of infestation. In contrast, stomatal conductance, leaf dry mass per fresh mass, constitutive isoprene emissions, and induced green leaf volatile (GLV), monoterpene, sesquiterpene and benzenoid emissions increased with increasing the severity of gall infestation. The rates of induced emissions were low and these emissions were associated with methyl jasmonate release from leaf laminas. The data demonstrate that petiole gall infestations lead to major changes in leaf lamina sink-source relationships and leaf water relations, thereby significantly altering lamina photosynthesis. Modifications in stress-induced emissions likely indicated systemic signaling triggered by jasmonate transported from the petiole galls to the lamina where jasmonate elicited a cascade of volatile emission responses. Enhance isoprene emissions and induced volatile emissions can play a major role in indirect defense against other herbivores, securing the food source for the gall aphids. In conclusion, a massive infestation by petiole gall aphids can profoundly modify the foliage photosynthetic performance and volatile emission profiles in poplars.

7.
Plant Cell Environ ; 41(1): 160-175, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28776716

ABSTRACT

Oak trees (Quercus) are hosts of diverse gall-inducing parasites, but the effects of gall formation on the physiology and biochemistry on host oak leaves is poorly understood. The influence of infection by four species from two widespread gall wasp genera, Neuroterus (N. anthracinus and N. albipes) and Cynips (C. divisa and C. quercusfolii), on foliage morphology, chemistry, photosynthetic characteristics, constitutive isoprene, and induced volatile emissions in Q. robur was investigated. Leaf dry mass per unit area (MA ), net assimilation rate per area (AA ), stomatal conductance (gs ), and constitutive isoprene emissions decreased with the severity of infection by all gall wasp species. The reduction in AA was mainly determined by reduced MA and to a lower extent by lower content of leaf nitrogen and phosphorus in gall-infected leaves. The emissions of lipoxygenase pathway volatiles increased strongly with increasing infection severity for all 4 species with the strongest emissions in major vein associated species, N. anthracinus. Monoterpene and sesquiterpene emissions were strongly elicited in N. albipes and Cynips species, but not in N. anthracinus. These results provide valuable information for diagnosing oak infections using ambient air volatile fingerprints and for predicting the impacts of infections on photosynthetic productivity and whole tree performance.


Subject(s)
Photosynthesis , Plant Diseases/parasitology , Plant Leaves/physiology , Plant Leaves/parasitology , Quercus/physiology , Quercus/parasitology , Volatile Organic Compounds/metabolism , Wasps/physiology , Animals , Biomass , Butadienes/metabolism , Carbon Dioxide/metabolism , Hemiterpenes/metabolism , Models, Biological , Pentanes/metabolism , Principal Component Analysis , Species Specificity , Steam , Stress, Physiological
8.
J Exp Bot ; 68(16): 4679-4694, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28981785

ABSTRACT

Methyl jasmonate (MeJA) is a key airborne elicitor activating jasmonate-dependent signaling pathways, including induction of stress-related volatile emissions, but how the magnitude and timing of these emissions scale with MeJA dose is not known. Treatments with exogenous MeJA concentrations ranging from mild (0.2 mM) to lethal (50 mM) were used to investigate quantitative relationships among MeJA dose and the kinetics and magnitude of volatile release in Cucumis sativus by combining high-resolution measurements with a proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. The results highlighted biphasic kinetics of elicitation of volatiles. The early phase, peaking in 0.1-1 h after the MeJA treatment, was characterized by emissions of lipoxygenase (LOX) pathway volatiles and methanol. In the subsequent phase, starting in 6-12 h and reaching a maximum in 15-25 h after the treatment, secondary emissions of LOX compounds as well as emissions of monoterpenes and sesquiterpenes were elicited. For both phases, the maximum emission rates and total integrated emissions increased with applied MeJA concentration. Furthermore, the rates of induction and decay, and the duration of emission bursts were positively, and the timing of emission maxima were negatively associated with MeJA dose for LOX compounds and terpenoids, except for the duration of the first LOX burst. These results demonstrate major effects of MeJA dose on the kinetics and magnitude of volatile response, underscoring the importance of biotic stress severity in deciphering the downstream events of biological impacts.


Subject(s)
Acetates/administration & dosage , Acetates/metabolism , Cucumis sativus/metabolism , Cyclopentanes/administration & dosage , Cyclopentanes/metabolism , Oxylipins/administration & dosage , Oxylipins/metabolism , Volatile Organic Compounds/metabolism , Acetates/pharmacology , Cucumis sativus/drug effects , Cyclopentanes/pharmacology , Dose-Response Relationship, Drug , Gas Chromatography-Mass Spectrometry , Monoterpenes/metabolism , Oxylipins/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Sesquiterpenes/metabolism
9.
Biosens Bioelectron ; 83: 281-6, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27132002

ABSTRACT

Here we program an initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction. Due to the recycling of initiator and performance in a cascade manner, this system is versatilely extended to logic operations, including the construction of concatenated logic circuits with a feedback function and a biocomputing keypad-lock security system. Compared with previously reported molecular security systems, the prominent feature of our keypad lock is that it can be spontaneously reset and recycled with no need of any external stimulus and human intervention. Moreover, through integrating with an isothermal amplification technique of rolling circle amplification (RCA), this programming catalytic DNA self-assembly strategy readily achieves sensitive and selective biosensing of initiator. Importantly, a magnetic graphene oxide (MGO) is introduced to remarkably reduced background, which plays an important role in enhancing the signal-to-noise ratio and improving the detection sensitivity. Therefore, the proposed sophisticated DNA strand displacement-based methodology with engineering dynamic functions may find broad applications in the construction of programming DNA nanostructures, amplification biosensing platform, and large-scale DNA circuits.


Subject(s)
Biosensing Techniques , Computers, Molecular , DNA/chemistry , Nanostructures/chemistry , Nucleic Acid Amplification Techniques , Biosensing Techniques/methods , Catalysis , Graphite/chemistry , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Conformation , Oxides/chemistry
10.
Tree Physiol ; 36(7): 856-72, 2016 07.
Article in English | MEDLINE | ID: mdl-27225874

ABSTRACT

Fungal infections result in decreases in photosynthesis, induction of stress and signaling volatile emissions and reductions in constitutive volatile emissions, but the way different physiological processes scale with the severity of infection is poorly known. We studied the effects of infection by the obligate biotrophic fungal pathogen Melampsora larici-populina Kleb., the causal agent of poplar leaf rust disease, on photosynthetic characteristics, and constitutive isoprene and induced volatile emissions in leaves of Populus balsamifera var. suaveolens (Fisch.) Loudon. exhibiting different degrees of damage. The degree of fungal damage, quantified by the total area of chlorotic and necrotic leaf areas, varied between 0 (noninfected control) and ∼60%. The rates of all physiological processes scaled quantitatively with the degree of visual damage, but the scaling with damage severity was weaker for photosynthetic characteristics than for constitutive and induced volatile release. Over the whole range of damage severity, the net assimilation rate per area (AA) decreased 1.5-fold, dry mass per unit area 2.4-fold and constitutive isoprene emissions 5-fold, while stomatal conductance increased 1.9-fold and dark respiration rate 1.6-fold. The emissions of key stress and signaling volatiles (methanol, green leaf volatiles, monoterpenes, sesquiterpenes and methyl salicylate) were in most cases nondetectable in noninfested leaves, and increased strongly with increasing the spread of infection. The moderate reduction in AA resulted from the loss of photosynthetically active biomass, but the reduction in constitutive isoprene emissions and the increase in induced volatile emissions primarily reflected changes in the activities of corresponding biochemical pathways. Although all physiological alterations in fungal-infected leaves occurred in a stress severity-dependent manner, modifications in primary and secondary metabolic pathways scaled differently due to contrasting operational mechanisms.


Subject(s)
Adaptation, Physiological , Basidiomycota/growth & development , Photosynthesis , Plant Diseases/microbiology , Populus/physiology , Stress, Physiological , Volatile Organic Compounds/metabolism , Biomass , Butadienes/metabolism , Hemiterpenes/metabolism , Metabolic Networks and Pathways , Methanol/metabolism , Pentanes/metabolism , Plant Leaves/growth & development , Plant Leaves/microbiology , Populus/growth & development , Populus/metabolism , Populus/microbiology , Salicylates/metabolism , Signal Transduction , Terpenes/metabolism , Trees
11.
Chem Commun (Camb) ; 52(31): 5455-8, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27010350

ABSTRACT

Toehold-mediated strand displacement-based nanocircuits are developed by integrating catalytic hairpin assembly (CHA) with hybridization chain reaction (HCR), which achieves self-assembly of hyperbranched DNA structures and is readily utilized as an enzyme-free amplifier for homogeneous CRET detection of microRNA with high sensitivity and selectivity.


Subject(s)
Biosensing Techniques/methods , DNA/chemistry , MicroRNAs/analysis , Catalysis , Nucleic Acid Conformation , Nucleic Acid Hybridization/methods
12.
Chem Commun (Camb) ; 52(2): 402-5, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26525041

ABSTRACT

A cascade recycling amplification (CRA) that implements cascade logic circuits with feedback amplification function is developed for label-free chemiluminescence detection of microRNA-122 with an ultrahigh sensitivity of 0.82 fM and excellent specificity, which is applied to construct a series of molecular-scale two-input logic gates by using microRNAs as inputs and CRA products as outputs.


Subject(s)
Biosensing Techniques/methods , Computers, Molecular , MicroRNAs/analysis , Nucleic Acid Amplification Techniques/methods , DNA/chemical synthesis , DNA Polymerase I/chemistry , DNA, Catalytic/chemical synthesis , Electrophoresis, Polyacrylamide Gel , Endonucleases/chemistry , Inverted Repeat Sequences , Nucleic Acid Hybridization
13.
J Plant Growth Regul ; 35(4): 921-935, 2016 Dec.
Article in English | MEDLINE | ID: mdl-29367803

ABSTRACT

Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions.

14.
ACS Appl Mater Interfaces ; 7(41): 23310-9, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26420675

ABSTRACT

Here we report a target-catalyzed DNA four-way junction (DNA-4WJ) on the basis of toehold-mediated DNA strand displacement reaction (TM-SDR), which is readily applied in enzyme-free amplified chemiluminescence resonance energy transfer (CRET) imaging of microRNA. In this system, the introduction of target microRNA-let-7a (miR-let-7a) activates a cascade of assembly steps with four DNA hairpins, followed by a disassembly step in which the target microRNA is displaced and released from DNA-4WJ to catalyze the self-assembly of additional branched junctions. As a result, G-quadruplex subunit sequences and fluorophore fluorescein amidite (FAM) are encoded in DNA-4WJ in a close proximity, stimulating a CRET process in the presence of hemin/K(+) to form horseradish peroxidase (HRP)-mimicking DNAzyme that catalyzes the generation of luminol/H2O2 chemiluminescence (CL), which further transfers to FAM. The background signal is easily reduced using magnetic graphene oxide (MGO) to remove unreacted species through magnetic separation, which makes a great contribution to improve the detection sensitivity and achieves a detection limit as low as 6.9 fM microRNA-let-7a (miR-let-7a). In addition, four-input concatenated logic circuits with an automatic reset function have been successfully constructed relying on the architecture of the proposed DNA-4WJ. More importantly, DNA nanohydrogels are self-assembled using DNA-4WJs as building units after centrifugation, which are driven by liquid crystallization and dense packaging of building units. Moreover, the DNA nanohydrogels are readily functionalized by incorporating with aptamers, bioimaging agents, and drug loading sites, which thus are served as efficient nanocarriers for targeted drug delivery and cancer therapy with high loading capacity and excellent biocompatibility.


Subject(s)
DNA, Catalytic/metabolism , Drug Delivery Systems , Fluorescence Resonance Energy Transfer , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Logic , Luminescence , MicroRNAs/metabolism , Calibration , Cell Death , Cell Line, Tumor , Doxorubicin/pharmacology , Graphite , Humans , Magnetic Phenomena , Nanoparticles/chemistry , Nanoparticles/ultrastructure
15.
Biosens Bioelectron ; 71: 427-433, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25950939

ABSTRACT

Gold nanomaterials promise a wide range of potential applications in chemical and biological sensing, imaging, and catalysis. In this paper, we demonstrate a facile method for room-temperature synthesis of gold nanostars (AuNSs) with a size of ~50 nm via seeded growth. Significantly, the AuNSs are found to have high light-scattering properties, which are successfully used as labels for sensitive and selective detection of nucleic acids and proteins by using exonuclease III (Exo III) as a biocatalyst. For DNA detection, the binding of targets to the functionalized AuNS probes leads to the Exo III-stimulated cascade recycling amplification. As a result, a large amount of AuNSs are released from magnetic nanoparticles (MNPs) into solution, providing a greatly enhanced light-scattering signal for amplified sensing process. Moreover, a binding-induced DNA three-way junction (DNA TWJ) is introduced to thrombin detection, in which the binding of two aptamers to thrombin triggers assembly of the DNA motifs and initiates the subsequent DNA strand displacement reaction (SDR) and Exo III-assisted cascade recycling amplification. The detection limits of 89 fM and 5.6 pM are achieved for DNA and thrombin, respectively, which are comparable to or even exceed that of the reported isothermal amplification methods. It is noteworthy that based on the DNA TWJ strategy the sequences are independent on target proteins. Additionally, the employment of MNPs in the assays can not only simplify the operations but also improve the detection sensitivity. Therefore, the proposed amplified light-scattering assay with high sensitivity and selectivity, acceptable accuracy, and satisfactory versatility of analytes provides various applications in bioanalysis.


Subject(s)
Biosensing Techniques/instrumentation , DNA/analysis , Exodeoxyribonucleases/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Thrombin/analysis , Catalysis , DNA/chemistry , Equipment Design , Equipment Failure Analysis , Gold/radiation effects , Light , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Metal Nanoparticles/ultrastructure , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Spectrometry, Fluorescence/instrumentation
16.
Biosens Bioelectron ; 62: 208-13, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25016251

ABSTRACT

Here an exonuclease III (Exo III)-assisted cascade autocatalytic recycling amplification (Exo-CARA) strategy is proposed for label-free chemiluminescent (CL) detection of platelet-derived growth factor BB (PDGF-BB) by taking advantage of both recognition property of aptamer and cleavage function of Exo III. Functionally, this system consists of a duplex DNA (aptamer-blocker hybrid), two kinds of hairpin structures (MB1 and MB2), and Exo III. Upon recognizing and binding with PDGF-BB, aptamer folds into a close configuration, which initiates the proposed Exo-CARA reaction (Recyclings I→II→III→II). Finally, numerous "caged" G-quadruplex sequences on DNAzyme1 and DNAzyme2 release that intercalate hemin to catalyze the oxidation of luminol by H2O2 to generate an amplified CL signal, achieving excellent specificity and high sensitivity with a detection limit of 6.8×10(-13) M PDGF-BB. The proposed strategy has the advantages of simple design, isothermal conditions, homogeneous reaction without separation and washing steps, effective-cost without the need of labeling, and high amplification efficiency, which might be a universal and promising protocol for the detection of a variety of biomolecules whose aptamers undergo similar conformational changes.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques/methods , Proto-Oncogene Proteins c-sis/analysis , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Becaplermin , Exodeoxyribonucleases , G-Quadruplexes , Humans , Luminescent Measurements/methods , Nucleic Acid Amplification Techniques/methods , Proto-Oncogene Proteins c-sis/blood , Recombinant Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...