Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731472

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques in the brain. Aß1-42 is the main component of Aß plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aß aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aß1-42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aß1-42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aß neuroprotective effect by inhibiting Aß aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of ß-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aß1-42.


Subject(s)
Amyloid beta-Peptides , Nanowires , Silicon , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Nanowires/chemistry , Animals , PC12 Cells , Rats , Silicon/chemistry , Peptide Fragments/chemistry , Peptide Fragments/toxicity , Peptide Fragments/pharmacology , Cell Survival/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism
2.
Sci Bull (Beijing) ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38658235

ABSTRACT

The efficiency of rigid perovskite/silicon tandem solar cells has reached 33.9%. However, there has been no report on flexible perovskite/silicon tandem solar cells due to the challenge of overcoming the poor light absorption of ultrathin silicon bottom cells while maintaining their mechanical flexibility. Herein, we report the first demonstration of the perovskite/silicon tandem solar cell based on flexible ultrathin silicon. We show that reducing the wafer thicknesses and feature sizes of the light-trapping textures can significantly improve the flexibility of silicon without sacrificing light utilization. In addition, the capping of the perovskite top cells can further improve the device's mechanical durability by shifting the neutral plane toward the silicon surface that is prone to fracture. Finally, the resulting ultrathin (∼30 µm) flexible perovskite/silicon tandem solar cell achieves a certified stabilized efficiency of 22.8% with an extremely high power-to-weight ratio of 3.12 W g-1. Moreover, the flexible tandems exhibit remarkable bending durability, maintaining 98.2% of their initial performance after 3000 bending cycles at a radius of only 1 cm.

3.
Opt Lett ; 48(18): 4769-4772, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37707898

ABSTRACT

Solid-state self-powered UV detection is strongly required in various application fields to enable long-term operation. However, this requirement is incompatible with conventionally used metal-semiconductor-metal (MSM) UV photodetectors (PDs) due to the symmetric design of Schottky contacts. In this work, a self-powered MSM solar-blind UV-PD was realized using a lateral pn junction architecture. A large built-in electric field was obtained in the MSM-type UV-PD without impurity doping, leading to efficiency carrier separation and enhanced photoresponsivity at zero external bias. The solar-blind UV-PD exhibits a cutoff wavelength of 280 nm, a photo/dark current ratio of over 105, and a responsivity of 425.13 mA/W at -10 V. The mechanism of self-powered UV photodetection was further investigated by TCAD simulation of the internal electric field and carrier distributions.

4.
Nanotechnology ; 34(45)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37527633

ABSTRACT

In preparing tunnel oxygen passivation contact (TOPCon) solar cells, the metallization process often causes damage to passivation performance. Aiming to solve the issue, we investigated the advantages of the novel polysilicon, i.e. the carbon (C) or nitrogen (N) doped polysilicon, in resisting metallization damage. Our study reveals that C- or N-doped polysilicon does mitigate the passivation damage caused by the physical-vapor deposition metallization processes, i.e. the decrease in implied open-circuit voltage (iVoc) and the increase in recombination current (J0) are both suppressed. For the novel polysilicon samples suffered metallization, the decrease ofiVocwas only ∼-1 mV, and the increase ofJ0< 1 fA cm-2; in contrast, the decrease ofiVocof the standard polysilicon samples was -7 mV, and the increase ofJ0was ∼6 fA cm-2. In addition, we also explored the difference between the finger-metal and the full-metal metallization, showing that the finger-metal has less passivation damage due to the smaller contact area. However, the free energy loss analysis indicates that the advantage of the novel polysilicon in resisting metallization damage is overshadowed by the disadvantage of the higher contact resistivity when finger-metal electrodes are used. Numerical simulations prove that the efficiency of the solar cell with novel polysilicon still shows >0.2% absolute efficiency higher than that with the standard polysilicon, reaching 26% when full-metal electrodes by thermal evaporation.

5.
Small ; 19(49): e2304348, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37621035

ABSTRACT

Tunnel oxide passivating contact (TOPCon) solar cells (SCs) as one of the most competitive crystalline silicon (c-Si) technologies for the TW-scaled photovoltaic (PV) market require higher passivation performance to further improve their device efficiencies. Here, the successful construction of a double-layered polycrystalline silicon (poly-Si) TOPCon structure is reported using an in situ nitrogen (N)-doped poly-Si covered by a normal poly-Si, which achieves excellent passivation and contact properties simultaneously. The new design exhibits the highest implied open-circuit voltage of 755 mV and the lowest single-sided recombination current density (J0 ) of ≈0.7 fA cm⁻2 for a TOPCon structure and a low contact resistivity of less than 5 mΩ·cm2 , resulting in a high selectivity factor of ≈16. The mechanisms of passivation improvement are disclosed, which suggest that the introduction of N atoms into poly-Si restrains H overflow by forming stronger Si-N and N-H bonds, reduces interfacial defects, and induces favorable energy bending. Proof-of-concept TOPCon SCs with such a design receive a remarkable certified efficiency of 25.53%.

6.
Adv Mater ; 35(35): e2302071, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37226977

ABSTRACT

Currently, the full potential of perovskite solar cells (PSCs) is limited by chargecarrier recombination owing to imperfect passivation methods. Here, the recombination loss mechanisms owing to the interfacial energy offset and defects are quantified. The results show that a favorable energy offset can reduce minority carriers and suppress interfacial recombination losses more effectively than chemical passivation. To obtain high-efficiency PSCs, 2D perovskites are promising candidates, which offer powerful field effects and require only modest chemical passivation at the interface. The enhanced passivation and charge-carrier extraction offered by the 2D/3D heterojunction PSCs has boosted their power conversion efficiency to 25.32% (certified 25.04%) for small-size devices and to 21.48% for a large-area module (with a designated area of 29.0 cm2 ). Ion migration is also suppressed by the 2D/3D heterojunction, such that the unencapsulated small-size devices maintain 90% of their initial efficiency after 2000 h of continuous operation at the maximum power point.

7.
Nat Commun ; 14(1): 2166, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37061510

ABSTRACT

Despite the remarkable rise in the efficiency of perovskite-based solar cells, the stress-induced intrinsic instability of perovskite active layers is widely identified as a critical hurdle for upcoming commercialization. Herein, a long-alkyl-chain anionic surfactant additive is introduced to chemically ameliorate the perovskite crystallization kinetics via surface segregation and micellization, and physically construct a glue-like scaffold to eliminate the residual stresses. As a result, benefiting from the reduced defects, suppressed ion migration and improved energy level alignment, the corresponding unencapsulated perovskite single-junction and perovskite/silicon tandem devices exhibit impressive operational stability with 85.7% and 93.6% of their performance after 3000 h and 450 h at maximum power point tracking under continuous light illumination, providing one of the best stabilities to date under similar test conditions, respectively.

8.
Adv Mater ; 35(30): e2211962, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37079482

ABSTRACT

Despite the swift rise in power conversion efficiency (PCE) to more than 32%, the instability of perovskite/silicon tandem solar cells is still one of the key obstacles to practical application and is closely related to the residual strain of perovskite films. Herein, a simple surface reconstruction strategy is developed to achieve a global incorporation of butylammonium cations at both surface and bulk grain boundaries by post-treating perovskite films with a mixture of N,N-dimethylformamide and n-butylammonium iodide in isopropanol solvent, enabling strain-free perovskite films with simultaneously reduced defect density, suppressed ion migration, and improved energy level alignment. As a result, the corresponding single-junction perovskite solar cells yield a champion PCE of 21.8%, while maintaining 100% and 81% of their initial PCEs without encapsulation after storage for over 2500 h in N2 and 1800 h in air, respectively. Remarkably, a certified stabilized PCE of 29.0% for the monolithic perovskite/silicon tandems based on tunnel oxide passivated contacts is further demonstrated. The unencapsulated tandem device retains 86.6% of its initial performance after 306 h at maximum power point (MPP) tracking under continuous xenon-lamp illumination without filtering ultraviolet light (in air, 20-35 °C, 25-75%RH, most often ≈60%RH).

9.
ACS Appl Mater Interfaces ; 15(8): 10868-10876, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36794989

ABSTRACT

Incorporating emerging ultrawide bandgap semiconductors with a metal-semiconductor-metal (MSM) architecture is highly desired for deep-ultraviolet (DUV) photodetection. However, synthesis-induced defects in semiconductors complicate the rational design of MSM DUV photodetectors due to their dual role as carrier donors and trap centers, leading to a commonly observed trade-off between responsivity and response time. Here, we demonstrate a simultaneous improvement of these two parameters in ε-Ga2O3 MSM photodetectors by establishing a low-defect diffusion barrier for directional carrier transport. Specifically, using a micrometer thickness far exceeding its effective light absorption depth, the ε-Ga2O3 MSM photodetector achieves over 18-fold enhancement of responsivity and simultaneous reduction of the response time, which exhibits a state-of-the-art photo-to-dark current ratio near 108, a superior responsivity of >1300 A/W, an ultrahigh detectivity of >1016 Jones, and a decay time of 123 ms. Combined depth-profile spectroscopic and microscopic analysis reveals the existence of a broad defective region near the lattice-mismatched interface followed by a more defect-free dark region, while the latter one serves as a diffusion barrier to assist frontward carrier transport for substantially enhancing the photodetector performance. This work reveals the critical role of the semiconductor defect profile in tuning carrier transport for fabricating high-performance MSM DUV photodetectors.

10.
ACS Appl Mater Interfaces ; 14(46): 52223-52232, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36377745

ABSTRACT

CuSCN has been widely considered a promising candidate for low-cost and high-stable hole transport material in perovskite semitransparent solar cells (STSCs). However, the low conductivity of the solution-processed CuSCN hole transport layer (HTL) hinders the hole extraction and transport in devices, which makes it hard to achieve devices with high performance. Herein, we report a facile additive engineering approach to optimize the p conductivity of CuSCN HTLs in perovskite STSCs. The n-butylammonium iodide additive facilitates the formation of Cu2+ and generates more Cu vacancies in the CuSCN HTL. This realizes a significant enhancement of the hole concentration and p conductivity of the film. Moreover, the additive improves the solubility of the CuSCN precursor solution and results in a uniform coverage on the perovskite active layer. Therefore, the perovskite STSC with a high power conversion efficiency (PCE) of 19.24% has been achieved, which is higher than that of the spiro-OMeTAD (18.83%) and CuSCN (17.45%) counterparts. In addition, the unencapsulated CuSCN-based device retains 87.5% of the initial PCE after 20 days in the ambient atmosphere.

11.
Opt Express ; 30(12): 21309-21323, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224853

ABSTRACT

We demonstrate experimentally a flexible crystalline silicon (c-Si) solar cell (SC) based on dopant-free interdigitated back contacts (IBCs) with thickness of merely 50 µm for, to the best of our knowledge, the first time. A MoOx thin film is proposed to cover the front surface and the power conversion efficiency (PCE) is boosted to over triple that of the uncoated SC. Compared with the four-time thicker SC, our thin SC is still over 77% efficient. Systematic studies show the front MoOx film functions for both antireflection and passivation, contributing to the excellent performance. A double-interlayer (instead of a previously-reported single interlayer) is identified at the MoOx/c-Si interface, leading to efficient chemical passivation. Meanwhile, due to the large workfunction difference, underneath the interface a strong built-in electric field is generated, which intensifies the electric field over the entire c-Si active layer, especially in the 50-µm thick layer. Photocarriers are expelled quickly to the back contacts with less recombined and more extracted. Besides, our thin IBC SC is highly flexible. When bent to a radius of 6 mm, its PCE is still 76.6% of that of the unbent cell. Fabricated with low-temperature and doping-free processes, our thin SCs are promising as cost-effective, light-weight and flexible power sources.

12.
Opt Lett ; 47(19): 5044-5047, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36181182

ABSTRACT

LaInO3 (LIO) represents a new, to the best of knowledge, type of perovskite oxides for deep-ultraviolet (DUV) photodetection owing to the wide bandgap nature (∼5.0 eV) and the higher tolerance of defect engineering for tunable carrier transport. Here we fabricate fast-response DUV photodetectors based on epitaxial LIO thin films and demonstrate an effective strategy for balancing the photodetector performance using the oxygen growth pressure as a simple control parameter. Increasing the oxygen pressure is effective to suppress the oxygen vacancy formation in LIO, which is beneficial to suppress the dark current and enhance the response speed. The optimized LIO photodetector achieves a fast rise/fall time of 20 ms/73 ms, a low dark current of 2.0 × 10-12 A, a photo-to-dark current ratio of 1.2 × 103, and a detectivity of 6 × 1012 Jones.

13.
Nanomaterials (Basel) ; 11(7)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34361189

ABSTRACT

In this work, we report the same trends for the contact potential difference measured by Kelvin probe force microscopy and the effective carrier lifetime on crystalline silicon (c-Si) wafers passivated by AlOx layers of different thicknesses and submitted to annealing under various conditions. The changes in contact potential difference values and in the effective carrier lifetimes of the wafers are discussed in view of structural changes of the c-Si/SiO2/AlOx interface thanks to high resolution transmission electron microscopy. Indeed, we observed the presence of a crystalline silicon oxide interfacial layer in as-deposited (200 °C) AlOx, and a phase transformation from crystalline to amorphous silicon oxide when they were annealed in vacuum at 300 °C.

14.
Opt Lett ; 46(13): 3203-3206, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34197416

ABSTRACT

We report a GaN-based self-powered metal-semiconductor-metal (MSM)-type ultraviolet (UV) photodetector (PD) by employing a "lateral polarity structure (LPS)" grown on the sapphire substrate. An in-plane internal electric field and different Schottky barrier heights at a metal/semiconductor interface lead to efficient carrier separation and self-powered UV detection. A dark current of 6.8nA/cm2 and detectivity of 1.0×1012 Jones were obtained without applied bias. A high photo-to-dark current ratio of 1.2×104 and peak responsivity of 933.7 mA/W were achieved for the lateral polarity structure-photodetector (LPS-PD) under -10V. The enhanced performance of the LPS-PD was ascribed to the polarization-induced carrier separation as demonstrated by the lateral band diagram.

15.
Adv Sci (Weinh) ; 8(5): 2003245, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33717852

ABSTRACT

Achieving efficient passivating carrier-selective contacts (PCSCs) plays a critical role in high-performance photovoltaic devices. However, it is still challenging to achieve both an efficient carrier selectivity and high-level passivation in a sole interlayer due to the thickness dependence of contact resistivity and passivation quality. Herein, a light-promoted adsorption method is demonstrated to establish high-density Lewis base polyethylenimine (PEI) monolayers as promising PCSCs. The promoted adsorption is attributed to the enhanced electrostatic interaction between PEI and semiconductor induced by the photo-generated carriers. The derived angstrom-scale PEI monolayer is demonstrated to simultaneously provide a low-resistance electrical contact for electrons, a high-level field-effect passivation to semiconductor surface and an enhanced interfacial dipole formation at contact interface. By implementing this light-promoted adsorbed PEI as a single-layered PCSC for n-type silicon solar cell, an efficiency of 19.5% with an open-circuit voltage of 0.641 V and a high fill factor of 80.7% is achieved, which is one of the best results for devices with solution-processed electron-selective contacts. This work not only demonstrates a generic method to develop efficient PCSCs for solar cells but also provides a convenient strategy for the deposition of highly uniform, dense, and ultra-thin coatings for diverse applications.

16.
Micromachines (Basel) ; 11(6)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516889

ABSTRACT

The non-centrosymmetricity of III-nitride wurtzite crystals enables metal or nitrogen polarity with dramatically different surface energies and optical properties. In this work, III-polar and N-polar nanostructured ultraviolet multiple quantum wells (UV-MQWs) were fabricated by nanosphere lithography and reactive ion etching. The influence of KOH etching and rapid thermal annealing treatments on the luminescence behaviors were carefully investigated, showing a maximum enhancement factor of 2.4 in emission intensity for III-polar nanopillars, but no significant improvement for N-polar nanopillars. The discrepancy in optical behaviors between III- and N-polar nanopillar MQWs stems from carrier localization in III-polar surface, as indium compositional inhomogeneity is discovered by cathodoluminescence mapping, and a defect-insensitive emission property is observed. Therefore, non-radiative recombination centers such as threading dislocations or point defects are unlikely to influence the optical property even after post-fabrication surface treatment. This work lays solid foundation for future study on the effects of surface treatment on III- and N-polar nanostructured light-emitting-diodes and provides a promising route for the design of nanostructure photonic devices.

17.
ACS Appl Mater Interfaces ; 12(23): 26177-26183, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32402191

ABSTRACT

Efficient and stable electron selective materials compatible with commercial production are essential to the fabrication of dopant-free silicon solar cells. In this work, we report an air-stable TiN (titanium nitride) polycrystalline film, deposited using radio frequency sputtering process, as an electron selective contact in silicon solar cells. TiN films deposited at 300 W and 1.5 mTorr exhibit a low contact resistivity of 2.0 mΩ·cm2. Furthermore, the main factors and mechanisms affecting the carrier selectivity properties are also explored. TiN layers as full area rear electron contacts in n-type silicon solar cells have been successfully implemented, even though TiN film contains some oxygen. This process yields a 17% increment in relative efficiency in comparison with reference devices (n-Si/Al contact). Hence, considering the low thermal budget, scalable technique, and low contact resistivity, the TiN layers can pave the way to fabricate high-efficiency selective contact silicon solar cells with a higher degree of reproducibility.

18.
Opt Lett ; 45(8): 2427-2430, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32287250

ABSTRACT

The ${{\rm MoO}_{\rm x}}/{\rm Al}$MoOx/Al electrode was designed and fabricated on p-GaN and sapphire with good ohmic behavior and decent deep ultraviolet (DUV) reflectivity, respectively. The influences of ${{\rm MoO}_{\rm x}}$MoOx thickness and annealing condition on the electrical and optical behaviors of the ${{\rm MoO}_{\rm x}}/{\rm Al}$MoOx/Al structure were investigated. Surface morphology of ${{\rm MoO}_{\rm x}}$MoOx with different thicknesses reveals a 3D growth mode. Partial decomposition of ${{\rm MoO}_{\rm x}}$MoOx was discovered, which helps in the formation of ohmic contact between ${{\rm MoO}_{\rm x}}$MoOx and Al. The potential for application in deep ultraviolet light-emitting-diodes (DUV-LEDs) has also been demonstrated.

19.
Opt Lett ; 44(19): 4865-4868, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568462

ABSTRACT

To unlock the full potential of the perovskite solar cell (PSC) photocurrent density and power conversion efficiency, the topic of optical management and design optimization is of absolute importance. Here, we propose a gradient-index optical design of the PSC based on a Gaussian-type front-side glass structure. Numerical simulations clarify a broadband light-harvesting response of the new design, showing that a maximal photocurrent density of 23.35 mA/cm2 may be expected, which is an increase by 1.21 mA/cm2 compared with that of the traditional flat-glass counterpart (22.14 mA/cm2). Comprehensive analysis of the electric field distributions elucidates the light-trapping mechanism. Furthermore, PSCs having the Gaussian index profile display superior optical properties and performance compared to those of the uniform index counterpart under varying conditions of perovskite layer thicknesses and incident angles. The simulation results in this study provide an effective design scheme to promote optical absorption in PSCs.

20.
ACS Appl Mater Interfaces ; 11(40): 36727-36734, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31525907

ABSTRACT

Tin oxide (SnO2) is widely used in perovskite solar cells (PSCs) as an electron transport layer (ETL) material. However, its high surface trap density has already become a strong factor limiting PSC development. In this work, phosphoric acid is adopted to eliminate the SnO2 surface dangling bonds to increase electron collection efficiency. The phosphorus mainly exists at the boundaries in the form of chained phosphate groups, bonding with which more than 47.9% of Sn dangling bonds are eliminated. The reduction of surface trap states depresses the electron transport barriers, thus the electron mobility increases about 3 times when the concentration of phosphoric acid is optimized with 7.4 atom % in the SnO2 precursor. Furthermore, the stability of the perovskite layer deposited on the phosphate-passivated SnO2 (P-SnO2) ETL is gradually improved with an increase of the concentration. Due to the higher electron collection efficiency, the P-SnO2 ETLs can dramatically promote the power conversion efficiency (PCE) of the PSCs. As a result, the champion PSC has a PCE of 21.02%. Therefore, it has been proved that this simple method is efficient to improve the quality of ETL for high-performance PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...