Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Public Health ; 24(1): 1238, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711042

ABSTRACT

BACKGROUND: We conducted this meta-analysis to investigate the potential association between maternal smoking, alcohol and caffeinated beverages consumption during pregnancy and the risk of childhood brain tumors (CBTs). METHODS: A thorough search was carried out on PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Internet to identify pertinent articles. Fixed or random effects model was applied to meta-analyze the data. RESULTS: The results suggested a borderline statistically significant increased risk of CBTs associated with maternal smoking during pregnancy (OR 1.04, 95% CI 0.99-1.09). We found that passive smoking (OR 1.12, 95% CI 1.03-1.20), rather than active smoking (OR 1.00, 95% CI 0.93-1.07), led to an increased risk of CBTs. The results suggested a higher risk in 0-1 year old children (OR 1.21, 95% CI 0.94-1.56), followed by 0-4 years old children (OR 1.12, 95% CI 0.97-1.28) and 5-9 years old children (OR 1.11, 95% CI 0.95-1.29). This meta-analysis found no significant association between maternal alcohol consumption during pregnancy and CBTs risk (OR 1.00, 95% CI 0.80-1.24). An increased risk of CBTs was found to be associated with maternal consumption of caffeinated beverages (OR 1.16, 95% CI 1.07-1.26) during pregnancy, especially coffee (OR 1.18, 95% CI 1.00-1.38). CONCLUSIONS: Maternal passive smoking, consumption of caffeinated beverages during pregnancy should be considered as risk factors for CBTs, especially glioma. More prospective cohort studies are warranted to provide a higher level of evidence.


Subject(s)
Alcohol Drinking , Brain Neoplasms , Caffeine , Observational Studies as Topic , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Alcohol Drinking/adverse effects , Alcohol Drinking/epidemiology , Prenatal Exposure Delayed Effects/epidemiology , Brain Neoplasms/epidemiology , Brain Neoplasms/chemically induced , Brain Neoplasms/etiology , Child , Child, Preschool , Caffeine/adverse effects , Infant , Infant, Newborn , Smoking/epidemiology , Smoking/adverse effects , Risk Factors , Beverages/adverse effects
2.
J Neurooncol ; 165(1): 79-90, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37819535

ABSTRACT

BACKGROUND: The efficacy of current immunotherapeutic strategies for patients with glioblastoma multiforme (GBM) remains unsatisfactory. The purpose of this study was to investigate the correlation between tumor necrosis factor alpha-induced protein 2 (TNFAIP2) and immunogenic cell death (ICD) in GBM, and to examine the effect of TNFAIP2 knockdown and anti-PD-1 combination treatment in a mouse glioma model. METHODS: The CGGA and TCGA databases were used to explore the possible function of TNFAIP2 in GBM. Multiplex immunohistochemistry (mIHC) staining was performed to detect the immune infiltration of tissues. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), flow cytometry, and enzyme linked immunosorbent assay (ELISA) were utilized to detect the release of damage-associated molecular patterns (DAMPs) and the activation of the immune response. A mouse glioma model was applied to examine the induction of immune response. RESULTS: In vitro and in vivo studies demonstrated that TNFAIP2 knockdown increased the surface exposure of calreticulin (CALR), heat shock protein 70 kDa (HSP70), and heat shock protein 90 kDa (HSP90) in GBM cell lines, thereby inducing immunogenic cell death (ICD). Importantly, the study found that TNFAIP2 knockdown in combination with anti-PD-1 therapy significantly improved the overall survival of glioma in a mouse model. CONCLUSIONS: TNFAIP2 knockdown induces ICD by downregulating TNFAIP2 in GBM. In addition, TNFAIP2 knockdown sensitized glioma to anti-PD-1 therapy. Hence, targeting TNFAIP2 alone or in combination with anti-PD-1 therapy may be a potential strategy for GBM treatment through ICD.


Subject(s)
Glioblastoma , Glioma , Animals , Mice , Humans , Glioblastoma/pathology , Immunogenic Cell Death , Glioma/pathology , Cell Line , Disease Models, Animal , Cell Line, Tumor , Cytokines
3.
Transpl Immunol ; 71: 101550, 2022 04.
Article in English | MEDLINE | ID: mdl-35122956

ABSTRACT

Background The aim of the study was to explore the potential role of IL-37 in nerve repair and immune regulation in peripheral nerve xenograft hosts. Methods Rat nerve xenografts were transplanted into mouse recipients. Transplanted mice received an intraperitoneal injection of IL-37 on the day before transplantation, whereas control mice remained untreated. At postoperative 2, 4, 8, and 12 weeks, the effects of IL-37 were examined on motor function, tissue morphology, and regenerative ability of xenograft nerves. Levels of IL-17 and IL-22 in serum and spleen were measured at 3, 7, 14, and 28 days after nerve transplantation. Results At 12 postoperative weeks, grafted nerves grew well in IL-37 treatment group, as documented by the recovery in function of sciatic nerves compared to untreated controls. In particular, IL-37-treated mice showed more complete neuromorphology, thicker myelin sheath, compact structure, and the increased number of myelinated nerve fibers in histological examination. The number of T helper (Th)17 (CD3 + CD4 + IL-17+) and Th22 (CD3 + CD4 + IL-22+) cells in the spleen was reduced in the IL-37-treated group, as well as serum IL-17 and IL-22 were decreased after IL-37 treatment compared with the untreated group. Conclusions IL-37 attenuates immunomodulatory responses induced by xenografts, contributing to the recovery of nerve function and the prevention of muscle atrophy caused by nerve grafts.


Subject(s)
Interleukin-17 , Interleukins , Animals , Heterografts , Humans , Mice , Rats , Sciatic Nerve , Transplantation, Heterologous
4.
Oncol Rep ; 36(5): 2544-2552, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27633132

ABSTRACT

Temozolomide (TMZ) is approved for use as first-line treatment for glioblastoma multiforme (GBM). However, GBM shows chemoresistance shortly after the initiation of treatment. In order to detect whether silencing of human protein phosphatase 1D magnesium dependent (PPM1D) gene could increase the effects of TMZ in glioma cells, glioma cells U87-MG were infected with lentiviral shRNA vector targeting PPM1D silencing. After PPM1D silencing was established, cells were treated with TMZ. The multiple functions of human glioma cells after PPM1D silencing and TMZ chemotherapy were detected by flow cytometry and MTT assay. Significantly differentially expressed genes were distinguished by microarray-based gene expression profiling and analyzed by gene pathway enrichment analysis and ontology assessment. Western blotting was used to establish the protein expression of the core genes. PPM1D gene silencing improves TMZ induced cell proliferation and induces cell apoptosis and cell cycle arrest. When PPM1D gene silencing combined with TMZ was performed in glioma cells, 367 genes were upregulated and 444 genes were downregulated compared with negative control. The most significant differential expression pathway was pathway in cancer and IGFR1R, PIK3R1, MAPK8 and EP300 are core genes in the network. Western blotting showed that MAPK8 and PIK3R1 protein expression levels were upregulated and RB1 protein expression was decreased. It was consistent with that detected in gene expression profiling. In conclusion, PPM1D gene silencing combined with TMZ eradicates glioma cells through cell apoptosis and cell cycle arrest. PIK3R1/AKT pathway plays a role in the multiple functions of glioma cells after PPM1D silencing and TMZ chemotherapy.


Subject(s)
Dacarbazine/analogs & derivatives , Glioma/drug therapy , Glioma/genetics , Protein Phosphatase 2C/genetics , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase , Combined Modality Therapy , Dacarbazine/administration & dosage , Flow Cytometry , Gene Expression Regulation, Neoplastic , Gene Silencing , Genetic Therapy , Glioma/pathology , Humans , Lentivirus/genetics , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Oncogene Protein v-akt/biosynthesis , Oncogene Protein v-akt/genetics , Phosphatidylinositol 3-Kinases/biosynthesis , Phosphatidylinositol 3-Kinases/genetics , Protein Phosphatase 2C/antagonists & inhibitors , Temozolomide
SELECTION OF CITATIONS
SEARCH DETAIL
...