Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Sensors (Basel) ; 23(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37420877

ABSTRACT

Molecular conformational changes in the collapsing and reswelling processes occurring during the phase transition at the lower critical solution temperature (LCST) of the polymer are not well understood. In this study, we characterized the conformational change of Poly(oligo(Ethylene Glycol) Methyl Ether Methacrylate)-144 (POEGMA-144) synthesized on silica nanoparticles using Raman spectroscopy and zeta potential measurements. Changes in distinct Raman peaks associated with the oligo(Ethylene Glycol) (OEG) side chains (1023, 1320, and 1499 cm-1) with respect to the methyl methacrylate (MMA) backbone (1608 cm-1) were observed and investigated under increasing and decreasing temperature profiles (34 °C to 50 °C) to evaluate the polymer collapse and reswelling around its LCST (42 °C). In contrast to the zeta potential measurements that monitor the change in surface charges as a whole during the phase transition, Raman spectroscopy provided more detailed information on vibrational modes of individual molecular moieties of the polymer in responding to the conformational change.


Subject(s)
Nanoparticles , Spectrum Analysis, Raman , Polymers/chemistry , Methacrylates/chemistry , Nanoparticles/chemistry
2.
Sci Adv ; 7(51): eabk1378, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34919424

ABSTRACT

Recent years have seen compelling demonstrations of the importance of behavioral state on sensory processing and attention. Arousal plays a dominant role in controlling brain-wide neural activity patterns, particularly through modulation by norepinephrine. Noradrenergic brainstem nuclei, including locus coeruleus, can be activated by stimuli of multiple sensory modalities and broadcast modulatory signals via axonal projections throughout the brain. This organization might suggest proportional brain-wide norepinephrine release during states of heightened vigilance. Here, however, we have found that low-intensity, nonarousing visual stimuli enhanced vigilance-dependent noradrenergic signaling locally in visual cortex, revealed using dual-site fiber photometry to monitor noradrenergic Ca2+ responses of astroglia simultaneously in cerebellum and visual cortex and two-photon microscopy to monitor noradrenergic axonal terminal Ca2+ dynamics. Nitric oxide, following N-methyl-d-aspartate receptor activation in neuronal nitric oxide synthase-positive interneurons, mediated transient acceleration of norepinephrine-dependent astroglia Ca2+ activation. These findings reveal a candidate cortical microcircuit for sensory modality-selective modulation of attention.

3.
Biosens Bioelectron ; 191: 113436, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34157598

ABSTRACT

The Limulus Amebocyte Lysate (LAL) test is an in vitro assay widely used in the pharmaceutical and biotechnology industries to detect bacterial endotoxins. Endotoxin is a structural component of the cell wall of Gram-negative bacteria, which has serious pathogenic effects in the body and may cause dysfunction of multiple organ systems and increased risk of mortality. To address the growing need for LAL assays due to the increased demand from drug and vaccine manufacturers, we have developed a new LAL assay approach. Our detection mechanism is different and improved from those currently used in the industry, leading to increased test sensitivity and reduced assay time. Our study utilizes an open-microcavity photonic-crystal biosensor to quantify endotoxin concentrations. It has demonstrated an improved LAL assay sensitivity by 10 fold compared to the commercial standard methods and reduced the time needed for the assay by more than half. In addition, this approach requires as little as 5 µL of LAL reagent per test, thereby decreasing costs and conserving horseshoe crabs. The results reported in this paper indicate the possibility of using the photonic-crystal biosensor based approach for significant enhancements of endotoxin testing.


Subject(s)
Biosensing Techniques , Animals , Biological Assay , Endotoxins , Horseshoe Crabs , Indicators and Reagents
4.
Acta Biomater ; 117: 374-383, 2020 11.
Article in English | MEDLINE | ID: mdl-33010515

ABSTRACT

Longitudinal in vivo monitoring is essential for the design and evaluation of biomaterials. An ideal method would provide three-dimensional quantitative information, high spatial resolution, deep tissue penetration, and contrast between tissue and material structures. Photoacoustic (PA) or optoacoustic imaging is a hybrid technique that allows three-dimensional imaging with high spatial resolution. In addition, photoacoustic imaging allows for imaging of vascularization based on the intrinsic contrast of hemoglobin. In this study, we investigated photoacoustic computed tomography (PACT) as a tool for longitudinal monitoring of an implanted hydrogel in a small animal model. Hydrogels were loaded with gold nanorods to enhance contrast and imaged weekly for 8 weeks. PACT allowed non-invasive three-dimensional, quantitative imaging of the hydrogels over the entire 8 weeks. Quantitative volume analysis was used to evaluate the in vivo degradation kinetics of the implants which deviated slightly from in vitro predictions. Multispectral imaging allowed for the simultaneous analysis of hydrogel degradation and local vascularization. These results provide support for the substantial potential of PACT as a tool for insight into biomaterial performance in vivo.


Subject(s)
Nanotubes , Photoacoustic Techniques , Animals , Gold , Hydrogels , Imaging, Three-Dimensional , Tomography, X-Ray Computed
5.
Article in English | MEDLINE | ID: mdl-32632340

ABSTRACT

During prostate cancer progression, cancerous epithelial cells can undergo epithelial-mesenchymal transition (EMT). EMT is a crucial mechanism for the invasion and metastasis of epithelial tumors characterized by the loss of cell-cell adhesion and increased cell mobility. It is associated with biochemical changes such as epithelial cell markers E-cadherin and occludins being down-regulated, and mesenchymal markers vimentin and N-cadherin being upregulated. These changes in protein expression, specifically in the cell membrane, may be monitored via biophysical principles, such as changes in the refractive index (RI) of the cell membrane. In our previous research, we demonstrated the feasibility of using cellular RI as a unique contrast parameter to accomplish label-free detection of prostate cancer cells. In this paper, we report the use of our Photonic-Crystal biosensor in a Total-Internal-Reflection (PC-TIR) configuration to construct a label-free biosensing system, which allows for ultra-sensitive quantification of the changes in cellular RI due to EMT. We induced prostate cancer cells to undergo EMT by exposing these cells to soluble Transforming Growth Factor Beta 1 (TGF-ß1). The biophysical characteristics of the cellular RI were quantified extensively in comparison to non-induced cancer cells. Our study shows promising clinical potential in utilizing the PC-TIR biosensing system not only to detect prostate cancer cells, but also to evaluate changes in prostate cancer cells due to EMT.

6.
Article in English | MEDLINE | ID: mdl-32528214

ABSTRACT

The detection of cardiac troponin I (cTnI) is clinically used to monitor myocardial infarctions (MI) and other heart diseases. The development of highly sensitive detection assays for cTnI is needed for the efficient diagnosis and monitoring of cTnI levels. Traditionally, enzyme-based immunoassays have been used for the detection of cTnI. However, the use of label-free sensing techniques have the advantage of potentially higher speed and lower cost for the assays. We previously reported a Photonic Crystal-Total Internal Reflection (PC-TIR) biosensor for label-free quantification of cTnI. To further improve on this, we present a comparative study between an antibody based PC-TIR sensor that relies on recombinant protein G (RPG) for the proper orientation of anti-cTnI antibodies, and an aptamer-based PC-TIR sensor for improved sensitivity and performance. Both assays relied on the use of polyethylene glycol (PEG) linkers to facilitate the modification of the sensor surfaces with biorecognition elements and to provide fluidity of the sensing surface. The aptamer-based PC-TIR sensor was successfully able to detect 0.1 ng/mL of cTnI. For the antibody-based PC-TIR sensor, the combination of the fluidity of the PEG and the increased number of active antibodies allowed for an improvement in assay sensitivity with a low detection limit of 0.01 ng/mL. The developed assays showed good performance and potential to be applied for the detection of cTnI levels in clinical samples upon further development.

7.
J Solid State Chem ; 2832020 Mar.
Article in English | MEDLINE | ID: mdl-32095025

ABSTRACT

Nanoscale metal-organic framework (nMOF) is a distinctive type of crystalline compounds that consists of metal ions or clusters coordinated to organic ligands. This hybrid material has attracted fast-growing attention due to its tunable pore sizes, remarkably large surface areas, and high selectivity in uptaking small molecules. In this paper, we successfully developed a novel approach for synthesizing a core-shell structure with MIL-88B-4CH3 as a tunable nMOF shell and MnFe2O4 as a magnetic core. We controlled the growth of the core-shell particles by introducing different acetic acid concentrations and with varied reaction time. Acetic acid works as a modulating agent that allows for nucleation rate control, leading to tailored particle size. Our results show an increase in the particle size with increasing acetic acid concentration or reaction time. This study provides a valuable methodology for synthesis of core-shell nanoparticles with controlled sizes based on nMOF platforms.

8.
Article in English | MEDLINE | ID: mdl-32313355

ABSTRACT

The current clinical standard for mass screening of prostate cancer are prostate-specific antigen (PSA) biomarker assays. Unfortunately, the low specificity of PSA's bioassays to prostate cancer leads to high false-positive rates, as such there is an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we have successfully demonstrated, with the use of our Photonic-Crystal based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, detection of prostate cancer (PC-3) cells against benign prostate hyperplasia (BPH-1) cells. The PC-TIR biosensor achieved detection of individual prostate cancer cells utilizing cellular refractive index (RI) as the only contrast parameter. To further study this methodology in vitro, we report a comprehensive study of the cellular RI's of various prostate cancer and noncancerous cell lines (i.e. RWPE-1, BPH-1, PC-3, DU-145, and LNCaP) via reflectance spectroscopy and single-cell RI imaging utilizing the PC-TIR biosensor. Our study shows promising clinical potential in utilizing the PC-TIR biosensor system for the detection of prostate cancer against noncancerous prostate epithelial cells.

9.
J Biomed Opt ; 23(2): 1-6, 2018 02.
Article in English | MEDLINE | ID: mdl-29411562

ABSTRACT

Almost since its discovery, Limulus amoebocyte lysate (LAL) testing has been an important part of the pharmaceutical quality control toolkit. It allows for in vitro endotoxin testing, which has replaced tests using animals, such as using rabbits' thermal response to judge pyrogenicity of test samples, thus leading to a less expensive and faster test of parenteral pharmaceuticals and medical devices that contact blood or cerebrospinal fluid. However, limited by the detection mechanisms of the LAL assays currently used in industry, further improvement in their performance is challenging. To address the growing demand on optimizing LAL assays for increased test sensitivity and reduced assay time, we have developed an LAL assay approach based on a detection mechanism that is different from those being used in industry, namely, gel-clot, turbidimetric, and chromogenic detection. Using a unique open-microcavity photonic-crystal biosensor to monitor the change in the refractive index due to the reaction between LAL regents and endotoxins, we have demonstrated that this approach has improved the LAL assay sensitivity by 200 times compared with the commercial standard methods, reduced the time needed for the assay by more than half, and eliminated the necessity to incubate the test samples. This study opens up the possibility of using the significantly improved LAL assays for a wide range of applications.


Subject(s)
Biosensing Techniques/methods , Endotoxins/analysis , Limulus Test/methods , Biosensing Techniques/instrumentation , Endotoxins/metabolism , Equipment Design , Limulus Test/instrumentation , Membrane Proteins/chemistry , Membrane Proteins/metabolism
10.
J Med Ultrason (2001) ; 45(2): 205-212, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28821993

ABSTRACT

PURPOSE: Ultrasound imaging is an effective approach for diagnosing breast cancer, but it is highly operator-dependent. Recent advances in computer-aided diagnosis have suggested that it can assist physicians in diagnosis. Definition of the region of interest before computer analysis is still needed. Since manual outlining of the tumor contour is tedious and time-consuming for a physician, developing an automatic segmentation method is important for clinical application. METHODS: The present paper represents a novel method to segment breast ultrasound images. It utilizes a combination of region-based active contour and neutrosophic theory to overcome the natural properties of ultrasound images including speckle noise and tissue-related textures. First, due to inherent speckle noise and low contrast of these images, we have utilized a non-local means filter and fuzzy logic method for denoising and image enhancement, respectively. This paper presents an improved weighted region-scalable active contour to segment breast ultrasound images using a new feature derived from neutrosophic theory. RESULTS: This method has been applied to 36 breast ultrasound images. It generates true-positive and false-positive results, and similarity of 95%, 6%, and 90%, respectively. CONCLUSION: The purposed method indicates clear advantages over other conventional methods of active contour segmentation, i.e., region-scalable fitting energy and weighted region-scalable fitting energy.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Diagnosis, Computer-Assisted , Ultrasonography, Mammary/methods , Female , Humans , Image Enhancement , Image Processing, Computer-Assisted/methods , Ultrasonography, Mammary/standards
11.
Article in English | MEDLINE | ID: mdl-32528210

ABSTRACT

Prostate-specific antigen (PSA) biomarker assays are the current clinical method for mass screening of prostate cancer. However, high false-positive rates are often reported due to PSA's low specificity, leading to an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we demonstrated the feasibility of using cellular refractive indices (RI) as a unique contrast parameter to accomplish label-free detection of prostate cancer cells via variance testing, but were unable to determine if a specific cell was cancerous or noncancerous. In this paper, we report the use of our Photonic-Crystal biosensor in a Total-Internal-Reflection (PC-TIR) configuration to construct a label-free imaging system, which allows for the detection of individual prostate cancer cells utilizing cellular RI as the only contrast parameter. Noncancerous prostate (BPH-1) cells and prostate cancer (PC-3) cells were mixed at varied ratios and measured concurrently. Additionally, we isolated and induced PC-3 cells to undergo epithelial-mesenchymal transition (EMT) by exposing these cells to soluble factors such as TGF-01. The biophysical characteristics of the cellular RI were quantified extensively in comparison to non-induced PC-3 cells as well as BPH-1 cells. EMT is a crucial mechanism for the invasion and metastasis of epithelial tumors characterized by the loss of cell-cell adhesion and increased cell mobility. Our study shows promising clinical potential in utilizing the PC-TIR biosensor imaging system to not only detect prostate cancer cells, but also evaluate prostate cancer progression.

12.
Colloids Surf B Biointerfaces ; 160: 201-206, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28934663

ABSTRACT

Surface modification of single-walled carbon nanotubes (SWNTs) with DNA molecules has attracted much attention in recent years to increase SWNT solubility and make various SWNT-based nanobiodevices. Therefore, there is a critical need to quantify the interaction between DNA molecules and SWNT surfaces, particularly the intermediate structures during DNA adsorption. In this study, we demonstrate the ability to detect the adsorption of DNA oligomers on SWNT surfaces by fluorescence spectroscopy. Fluorescein-labelled, 30mer, thymine oligonucleotides (F-T30) were employed as a fluorescent probe to study the interaction of DNA with SWNTs. A clear quenching effect was observed when F-T30 was adsorbed onto SWNT surfaces. Using this method, the amount of DNA adsorbed onto the SWNT surfaces was measured under different sonication conditions to correlate adsorption efficiency with sonication strength and duration. When a bath-type sonicator was used, mild adsorption of F-T30 on SWNT surfaces was observed. Furthermore, a two-step adsorption was observed in this condition. In contrast, we observed rapid adsorption of F-T30 to SWNT surfaces at the higher sonication amplitude (60% maximal) using a probe-type sonicator, while only slight adsorption of DNA molecules was observed at the lower amplitude (20% maximal). Our data revealed that the quenching effect can be used to evaluate DNA adsorption onto SWNT surfaces. In addition, atomic force microscopy (AFM) and photoacoustic spectroscopy (PAS) were conducted to provide complementary information on the DNA-SWNT nanoconjugates.


Subject(s)
DNA/chemistry , Nanoconjugates/chemistry , Nanotubes, Carbon/chemistry , Oligonucleotides/chemistry , Sonication/methods , Adsorption , Fluorescein/chemistry , Fluorescent Dyes/chemistry , Kinetics , Sonication/instrumentation , Staining and Labeling/methods
13.
J Biomed Opt ; 21(11): 117004, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27893090

ABSTRACT

During emergency medical situations, where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. Complications during ETI, such as repeated attempts, failed intubation, or accidental intubation of the esophagus, can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. Our study examined the spectral reflectance properties of the tracheal and esophageal tissue to determine whether a unique spectral profile exists for either tissue for the purpose of detection. The study began by using a hyperspectral camera to image excised pig tissue samples exposed to white and UV light in order to capture the spectral reflectance properties with high fidelity. After identifying a unique spectral characteristic of the trachea that significantly differed from esophageal tissue, a follow-up investigation used a fiber optic probe to confirm the detectability and consistency of the different reflectance characteristics in a pig model. Our results characterize the unique and consistent spectral reflectance characteristic of tracheal tissue, thereby providing foundational support for exploiting spectral properties to detect the trachea during medical procedures.


Subject(s)
Esophagus/diagnostic imaging , Fiber Optic Technology/methods , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Trachea/diagnostic imaging , Animals , Esophagus/physiology , Intubation, Intratracheal , Principal Component Analysis , Swine , Trachea/physiology
14.
Anal Chem ; 88(6): 3024-30, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26859241

ABSTRACT

Fusarium virguliforme is a soil borne pathogen that causes sudden death syndrome (SDS) in soybean plants. This pathogenic disease may result in severe soybean yield suppression and can cause serious economic harm. It has been shown that the FvTox1 toxin produced by the pathogen may be the root cause of foliar SDS. Anti-FvTox1 single-chain variable fragment antibody expressed in transgenic soybean plants was shown to neutralize the FvTox1 toxin involved in foliar SDS development. Here, we have investigated the binding affinities of FvTox1 with four FvTox1-interacting peptides of 7 to 12 amino acids identified from phage display libraries using both bioinformatics-based molecular simulations and label-free bioassays with a unique photonic crystal biosensor. Results from the molecular simulations have predicted the interaction energies and 3-dimensional (3D) structures of FvTox1 and FvTox1-interacting peptide complexes. Our label-free binding assays have further provided the interaction strength of FvTox1 with four different FvTox1-interacting peptides and experimentally confirmed the simulation results obtained from bioinformatics-based molecular calculations.


Subject(s)
Biosensing Techniques , Fusarium/metabolism , Models, Molecular , Mycotoxins/toxicity , Peptides/metabolism , Computational Biology , Glycine max/microbiology
15.
Med Phys ; 42(5): 2169-78, 2015 May.
Article in English | MEDLINE | ID: mdl-25979011

ABSTRACT

PURPOSE: The purpose of this study is to develop an improved filtered-back-projection (FBP) algorithm for photoacoustic tomography (PAT), which allows image reconstruction with higher quality compared to images reconstructed through traditional algorithms. METHODS: A rigorous expression of a weighting function has been derived directly from a photoacoustic wave equation and used as a ramp filter in Fourier domain. The authors' new algorithm utilizes this weighting function to precisely calculate each photoacoustic signal's contribution and then reconstructs the image based on the retarded potential generated from the photoacoustic sources. In addition, an adaptive criterion has been derived for selecting the cutoff frequency of a low pass filter. Two computational phantoms were created to test the algorithm. The first phantom contained five spheres with each sphere having different absorbances. The phantom was used to test the capability for correctly representing both the geometry and the relative absorbed energy in a planar measurement system. The authors also used another phantom containing absorbers of different sizes with overlapping geometry to evaluate the performance of the new method for complicated geometry. In addition, random noise background was added to the simulated data, which were obtained by using an arc-shaped array of 50 evenly distributed transducers that spanned 160° over a circle with a radius of 65 mm. A normalized factor between the neighbored transducers was applied for correcting measurement signals in PAT simulations. The authors assumed that the scanned object was mounted on a holder that rotated over the full 360° and the scans were set to a sampling rate of 20.48 MHz. RESULTS: The authors have obtained reconstructed images of the computerized phantoms by utilizing the new FBP algorithm. From the reconstructed image of the first phantom, one can see that this new approach allows not only obtaining a sharp image but also showing the correct signal strength of the absorbers. The reconstructed image of the second phantom further demonstrates the capability to form clear images of the spheres with sharp borders in the overlapping geometry. The smallest sphere is clearly visible and distinguishable, even though it is surrounded by two big spheres. In addition, image reconstructions were conducted with randomized noise added to the observed signals to mimic realistic experimental conditions. CONCLUSIONS: The authors have developed a new FBP algorithm that is capable for reconstructing high quality images with correct relative intensities and sharp borders for PAT. The results demonstrate that the weighting function serves as a precise ramp filter for processing the observed signals in the Fourier domain. In addition, this algorithm allows an adaptive determination of the cutoff frequency for the applied low pass filter.


Subject(s)
Algorithms , Photoacoustic Techniques/methods , Tomography/methods , Computer Simulation , Models, Theoretical , Phantoms, Imaging , Photoacoustic Techniques/instrumentation , Tomography/instrumentation
16.
Biosens Bioelectron ; 58: 107-13, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24632136

ABSTRACT

A biosensor has been developed with a photonic crystal structure used in a total-internal-reflection (PC-TIR) configuration for label-free detection of a cardiac biomarker: Troponin I (cTnI). In contrast to a conventional optical microcavity that has a closed structure with its cavity layer sandwiched between two high-reflection surfaces, the PC-TIR configuration creates a unique open microcavity, which allows its cavity layer (sensing layer) to be easily functionalized and directly exposed to analyte molecules for bioassays. In this study, a PC-TIR sensor has been used for the label-free measurements of cardiac biomarkers by monitoring the changes in the resonant condition of the cavity due to biomolecular binding processes. Antibodies against cTnI are immobilized on the sensor surface for specific detection of cTnI with a wide range of concentrations. Detection limit of cTnI with a concentration as low as 0.1ngmL(-1) has been achieved.


Subject(s)
Biosensing Techniques/instrumentation , Immunoassay/instrumentation , Refractometry/instrumentation , Troponin I/blood , Biological Assay/instrumentation , Crystallization , Equipment Design , Equipment Failure Analysis , Miniaturization , Photons , Staining and Labeling , Troponin I/chemistry
17.
Opt Lett ; 38(15): 2739-41, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23903128

ABSTRACT

We present a new method for sensitive ultrasound detection using an open-cavity optoacoustic sensor. Our results have demonstrated significant enhancement of detection sensitivity when the open-cavity sensor is used in media with large isothermal compressibility. A near-linear relationship between detected optoacoustic signal strength and isothermal compressibility has been found.


Subject(s)
Photoacoustic Techniques/instrumentation , Polymethyl Methacrylate , Tomography
18.
J Med Eng ; 2013: 808056, 2013.
Article in English | MEDLINE | ID: mdl-27006922

ABSTRACT

The label-free detection of one of the cardiac biomarkers, myoglobin, using a photonic-crystal-based biosensor in a total-internal-reflection configuration (PC-TIR) is presented in this paper. The PC-TIR sensor possesses a unique open optical microcavity that allows for several key advantages in biomolecular assays. In contrast to a conventional closed microcavity, the open configuration allows easy functionalization of the sensing surface for rapid biomolecular binding assays. Moreover, the properties of PC structures make it easy to be designed and engineered for operating at any optical wavelength. Through fine design of the photonic crystal structure, biochemical modification of the sensor surface, and integration with a microfluidic system, we have demonstrated that the detection sensitivity of the sensor for myoglobin has reached the clinically significant concentration range, enabling potential usage of this biosensor for diagnosis of acute myocardial infarction. The real-time response of the sensor to the myoglobin binding may potentially provide point-of-care monitoring of patients and treatment effects.

19.
Biomed Opt Express ; 3(7): 1662-29, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22808436

ABSTRACT

Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).

20.
ScientificWorldJournal ; 2012: 128705, 2012.
Article in English | MEDLINE | ID: mdl-22666090

ABSTRACT

A conundrum has long lingered over association of cytosol elongation factor Tu (EF-Tu) with bacterial surface. Here we investigated it with Acinetobacter baumannii, an emerging opportunistic pathogen associated with a wide spectrum of infectious diseases. The gene for A. baumannii EF-Tu was sequenced, and recombinant EF-Tu was purified for antibody development. EF-Tu on the bacterial surface and the outer membrane vesicles (OMVs) was revealed by immune electron microscopy, and its presence in the outer membrane (OM) and the OMV subproteomes was verified by Western blotting with the EF-Tu antibodies and confirmed by proteomic analyses. EF-Tu in the OM and the OMV subproteomes bound to fibronectin as detected by Western blot and confirmed by a label-free real-time optical sensor. The sensor that originates from photonic crystal structure in a total-Internal-reflection (PC-TIR) configuration was functionalized with fibronectin for characterizing EF-Tu binding. Altogether, with a novel combination of immunological, proteomical, and biophysical assays, these results suggest association of A. baumannii EF-Tu with the bacterial cell surface, OMVs, and fibronectin.


Subject(s)
Acinetobacter baumannii/metabolism , Fibronectins/metabolism , Peptide Elongation Factor Tu/metabolism , Acinetobacter baumannii/genetics , Bacterial Outer Membrane Proteins/metabolism , Cell Membrane/metabolism , Genes, Bacterial , Microscopy, Immunoelectron , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...