Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 330: 118211, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38636580

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Qilong capsule (QC) is developed from the traditional Chinese medicine formula Buyang Huanwu Decoction, which has been clinically used to invigorate Qi and promote blood circulation to eliminate blood stasis. Myocardial ischemia‒reperfusion injury (MIRI) can be attributed to Qi deficiency and blood stasis. However, the effects of QC on MIRI remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect and possible mechanism of QC on platelet function in MIRI rats. MATERIALS AND METHODS: The left anterior descending artery of adult Sprague‒Dawley rats was ligated for 30 min and then reperfused for 120 min with or without QC treatment. Then, the whole blood viscosity, plasma viscosity, coagulation, platelet adhesion rate, platelet aggregation, and platelet release factors were evaluated. Platelet CD36 and its downstream signaling pathway-related proteins were detected by western blotting. Furthermore, the active components of QC and the molecular mechanism by which QC regulates platelet function were assessed via molecular docking, platelet aggregation tests in vitro and BLI analysis. RESULTS: We found that QC significantly reduced the whole blood viscosity, plasma viscosity, platelet adhesion rate, and platelet aggregation induced by ADP or AA in rats with MIRI. The inhibition of platelet activation by QC was associated with reduced levels of ß-TG, PF-4, P-selectin and PAF. Mechanistically, QC effectively attenuated the expression of platelet CD36 and thus inhibited the activation of Src, ERK5, and p38. The active components of QC apparently suppressed platelet aggregation in vitro and regulated the CD36 signaling pathway. CONCLUSIONS: QC improves MIRI-induced hemorheological disorders, which might be partly attributed to the inhibition of platelet activation via CD36-mediated platelet signaling pathways.


Subject(s)
Blood Platelets , CD36 Antigens , Drugs, Chinese Herbal , Myocardial Reperfusion Injury , Platelet Activation , Platelet Aggregation , Rats, Sprague-Dawley , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Signal Transduction/drug effects , Male , Platelet Activation/drug effects , CD36 Antigens/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Platelet Aggregation/drug effects , Rats , Molecular Docking Simulation
2.
Heliyon ; 10(7): e28581, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586351

ABSTRACT

Learning and memory disorder is a cluster of symptoms caused by neuronal aging and other diseases of the central nervous system (CNS). Panax notoginseng saponins (PNS) are a series of saponins derived from the natural active ingredients of traditional Chinese medicine (TCM) that have neuroprotective effects on the central nervous system. In this paper, we review the ameliorative effects and mechanisms of Panax notoginseng saponin-like components on learning and memory disorders to provide valuable references and insights for the development of new drugs for the treatment of learning and memory disorders. Our summary results suggest that Panax ginseng saponins have significant effects on improving learning and memory disorders, and these effects and potential mechanisms are mediated by their anti-inflammatory, anti-apoptotic, antioxidant, ß-amyloid lowering, mitochondrial homeostasis in vivo, neuronal structure and function improving, neurogenesis promoting, neurotransmitter release regulating, and probiotic homeostasis in vivo activities. These findings suggest the potential of Panax notoginseng saponin-like constituents as drug candidates for improving learning and memory disorders.

3.
Eur J Med Chem ; 267: 116173, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38320425

ABSTRACT

Near-infrared two-region (NIR-II, 1000-1700 nm) fluorescence imaging has received widespread attention because of its high in vivo penetration depth, high imaging resolution, fast imaging speed and high efficiency, dynamic imaging, and high clinical translatability. This paper reviews the application of NIR-II imaging technology in disease diagnosis and treatment. The paper highlights the latest research progress of commonly used NIR-II imaging materials and the latest progress of multifunctional diagnostic platforms based on NIR-II imaging technology, and discusses the challenges and directions for the development and utilization of novel NIR-II imaging probes.


Subject(s)
Optical Imaging , Theranostic Nanomedicine , Theranostic Nanomedicine/methods , Optical Imaging/methods , Fluorescent Dyes
4.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069059

ABSTRACT

Ginsenoside Rg3 extracted from Panax notoginseng has therapeutic effects on diabetes and heart diseases. However, the underlying mechanism of ginsenoside Rg3 on diabetic cardiomyopathy (DCM) remains unclear. 24-week-old diabetic db/db mice were treated with ginsenoside Rg3 for 12 weeks, then body weight, serum lipids, adiponectin levels, as well as cardiac function and pathological morphology, were measured. The targets of ginsenoside Rg3 and its regulation of the adiponectin pathway were also evaluated on 3T3-L1 or H9c2 cells. Ginsenoside Rg3 directly bound to PPAR-γ, improving adiponectin secretion and promoting adiponectin signaling. Significantly attenuated overweight, hyperglycemia, and hyperlipidemia, as well as alleviated lipid accumulation and dysfunction in adipose, liver, and heart tissues, were observed in the ginsenoside Rg3-treated group. Ginsenoside Rg3 could be a promising drug targeting PPAR-γ to treat diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Ginsenosides , Animals , Mice , Adiponectin/metabolism , Diabetes Mellitus/drug therapy , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/prevention & control , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , PPAR gamma/metabolism , Signal Transduction
6.
Acta Cir Bras ; 38: e380123, 2023.
Article in English | MEDLINE | ID: mdl-37098925

ABSTRACT

PURPOSE: Myocardial ischemia/reperfusion injury (MIRI) leads to myocardial tissue necrosis, which will increase the size of myocardial infarction. The study examined the protective effect and mechanism of the Guanxin Danshen formula (GXDSF) on MIRI in rats. METHODS: MIRI model was performed in rats; rat H9C2 cardiomyocytes were hypoxia-reoxygenated to establish a cell injury model. RESULTS: The GXDSF significantly reduced myocardial ischemia area, reduced myocardial structural injury, decreased the levels of interleukin (IL-1ß, IL-6) in serum, decreased the activity of myocardial enzymes, increased the activity of superoxide dismutase (SOD), and reduced glutathione in rats with MIRI. The GXDSF can reduce the expression of nucleotide- binding oligomerization domain, leucine-rich repeat and pyrin domain containing nod-like receptor family protein 3 (NLRP3), IL-1ß, caspase-1, and gasdermin D (GSDMD) in myocardial tissue cells. Salvianolic acid B and notoginsenoside R1 protected H9C2 cardiomyocytes from hypoxia and reoxygenation injury and reduced the levels of tumor necrosis factor α (TNF-α) and IL-6 in the cell supernatant, decreasing the NLRP3, IL-18, IL-1ß, caspase-1, and GSDMD expression in H9C2 cardiomyocytes. GXDSF can reduce the myocardial infarction area and alleviate the damage to myocardial structure in rats with MIRI, which may be related to the regulation of the NLRP3. CONCLUSIONS: GXDSF reduces MIRI in rat myocardial infarction injury, improves structural damage in myocardial ischemia injury, and reduces myocardial tissue inflammation and oxidative stress by lowering inflammatory factors and controlling focal cell death signaling pathways.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Myocardial Reperfusion Injury , Salvia miltiorrhiza , Rats , Animals , Rats, Sprague-Dawley , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-6/metabolism , Salvia miltiorrhiza/metabolism , Myocytes, Cardiac/pathology , Myocardial Infarction/drug therapy , Myocardial Infarction/prevention & control , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Caspase 1 , Hypoxia/metabolism
7.
Int Immunopharmacol ; 117: 109730, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36878047

ABSTRACT

Glycolysis-mediated macrophage polarization plays a crucial role in atherosclerosis. Although it is known that calenduloside E (CE) exerts anti-inflammatory and lipid-lowering effects in atherosclerosis, the underlying mechanism of action is not clearly understood. We hypothesized that CE functions by inhibiting M1 macrophage polarization via regulation of glycolysis. To verify this hypothesis, we determined the effects of CE in apolipoprotein E deficient (ApoE-/-) mice and on macrophage polarization in oxidized low-density lipoprotein (ox-LDL)-induced RAW 264.7 macrophages and peritoneal macrophages. We also determined whether these effects are linked to regulation of glycolysis both in vivo and in vitro. The plaque size was reduced, and serum cytokine levels were decreased in the ApoE-/- +CE group compared with that in the model group. CE decreased lipid droplet formation, inflammatory factor levels, and mRNA levels of M1 macrophage markers in ox-ldl-induced macrophages. CE suppressed ox-ldl-induced glycolysis, lactate levels, and glucose uptake. The relationship between glycolysis and M1 macrophage polarization was demonstrated using the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one. CE substantially upregulated ox-ldl-induced Kruppel-like transcription factor (KLF2) expression, and the effects of CE on ox-ldl-induced glycolysis and inflammatory factor levels disappeared after KLF2 knockdown. Together, our findings suggest that CE alleviates atherosclerosis by inhibiting glycolysis-mediated M1 macrophage polarization through upregulation of KLF2 expression, providing a new strategy for the treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Mice , Animals , Atherosclerosis/metabolism , Macrophages/metabolism , Lipoproteins, LDL/metabolism , Apolipoproteins E/metabolism , Glycolysis , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism
8.
J Leukoc Biol ; 113(2): 139-148, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36822177

ABSTRACT

Macrophages are strategically located throughout the body at key sites in the immune system. A key feature in atherosclerosis is the uptake and accumulation of lipoproteins by arterial macrophages, leading to the formation of foam cells. After myocardial infarction, macrophages derived from monocytes infiltrate the infarcted heart. Macrophages are also closely related to adverse remodeling after heart failure. An in-depth understanding of the functions and characteristics of macrophages is required to study heart health and pathophysiological processes; however, the heterogeneity and plasticity explained by the classic M1/M2 macrophage paradigm are too limited. Single-cell sequencing is a high-throughput sequencing technique that enables the sequencing of the genome or transcriptome of a single cell. It effectively complements the heterogeneity of gene expression in a single cell that is ignored by conventional sequencing and can give valuable insights into the development of complex diseases. In the present review, we summarize the available research on the application of single-cell transcriptome sequencing to study the changes in macrophages during common cardiovascular diseases, such as atherosclerosis, myocardial infarction, and heart failure. This article also discusses the contribution of this knowledge to understanding the pathogenesis, development, diagnosis, and treatment of heart diseases.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Heart Failure , Myocardial Infarction , Humans , Cardiovascular Diseases/metabolism , Transcriptome , Macrophages/metabolism , Myocardial Infarction/pathology , Atherosclerosis/pathology
9.
Int J Artif Organs ; 46(3): 171-181, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36625364

ABSTRACT

PURPOSE: This study aimed to observe the effect of basic fibroblast growth factor (bFGF) gel preparation on wound repair in a full-thickness skin defect rat model and to further explore its mechanism. METHODS: The full-thickness skin defect model of Wistar rats was created with circular wounds of 20 mm or 10 mm in diameter on both sides of the spine. The animals were divided into the normal, model, control gel, and bFGF gel groups (300 IU/cm2). The effects of the bFGF gel on wound healing were evaluated and compared. Optical coherence tomography (OCT)-based angiography (OCTA) was used to investigate the effects of bFGF on angiogenesis during wound healing. Western blotting, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) kits were used to detect the effect of the gel preparation on the levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP2 and MMP9) on the wound surface to explore the mechanism. RESULTS: The bFGF gel significantly reduced wound area, promoted the formation of wound granulation tissue, and accelerated wound healing in the bFGF gel group on days 7 and 14, compared with the control gel group. OCTA results showed that bFGF significantly improved wound vascular density, diameter, and circumference. Western blot, PCR, and ELISA results showed that the gel preparation could promote the expression levels of MMP2, MMP9, and VEGF on the wound surface 7 and 14 days after injury. CONCLUSION: bFGF promotes angiogenesis in wound areas. Topical gel preparations of bFGF can be developed for use in wound repair.


Subject(s)
Fibroblast Growth Factor 2 , Vascular Endothelial Growth Factor A , Rats , Animals , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Fibroblast Growth Factor 2/pharmacology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/pharmacology , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/pharmacology , Rats, Wistar , Wound Healing
10.
Acta cir. bras ; 38: e380123, 2023. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1429535

ABSTRACT

Purpose: Myocardial ischemia/reperfusion injury (MIRI) leads to myocardial tissue necrosis, which will increase the size of myocardial infarction. The study examined the protective effect and mechanism of the Guanxin Danshen formula (GXDSF) on MIRI in rats. Methods: MIRI model was performed in rats; rat H9C2 cardiomyocytes were hypoxia-reoxygenated to establish a cell injury model. Results: The GXDSF significantly reduced myocardial ischemia area, reduced myocardial structural injury, decreased the levels of interleukin (IL-1ß, IL-6) in serum, decreased the activity of myocardial enzymes, increased the activity of superoxide dismutase (SOD), and reduced glutathione in rats with MIRI. The GXDSF can reduce the expression of nucleotide- binding oligomerization domain, leucine-rich repeat and pyrin domain containing nod-like receptor family protein 3 (NLRP3), IL-1ß, caspase-1, and gasdermin D (GSDMD) in myocardial tissue cells. Salvianolic acid B and notoginsenoside R1 protected H9C2 cardiomyocytes from hypoxia and reoxygenation injury and reduced the levels of tumor necrosis factor α (TNF-α) and IL-6 in the cell supernatant, decreasing the NLRP3, IL-18, IL-1ß, caspase-1, and GSDMD expression in H9C2 cardiomyocytes. GXDSF can reduce the myocardial infarction area and alleviate the damage to myocardial structure in rats with MIRI, which may be related to the regulation of the NLRP3. Conclusion: GXDSF reduces MIRI in rat myocardial infarction injury, improves structural damage in myocardial ischemia injury, and reduces myocardial tissue inflammation and oxidative stress by lowering inflammatory factors and controlling focal cell death signaling pathways.


Subject(s)
Animals , Rats , Myocardial Reperfusion , Reperfusion Injury , Ginsenosides/administration & dosage , NLR Family, Pyrin Domain-Containing 3 Protein
11.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36555264

ABSTRACT

Lifestyle changes have led to increased incidence of cardiovascular disease (CVD); therefore, potential targets against CVD should be explored to mitigate its risks. Adiponectin (APN), an adipokine secreted by adipose tissue, has numerous beneficial effects against CVD related to glucose and lipid metabolism disorders, including regulation of glucose and lipid metabolism, increasing insulin sensitivity, reduction of oxidative stress and inflammation, protection of myocardial cells, and improvement in endothelial cell function. These effects demonstrate the anti-atherosclerotic and antihypertensive properties of APN, which could aid in improving myocardial hypertrophy, and reducing myocardial ischemia/reperfusion (MI/R) injury and myocardial infarction. APN can also be used for diagnosing and predicting heart failure. This review summarizes and discusses the role of APN in the treatment of CVD related to glucose and lipid metabolism disorders, and explores future APN research directions and clinical application prospects. Future studies should elucidate the signaling pathway network of APN cardiovascular protective effects, which will facilitate clinical trials targeting APN for CVD treatment in a clinical setting.


Subject(s)
Cardiovascular Diseases , Lipid Metabolism Disorders , Myocardial Reperfusion Injury , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Adiponectin/metabolism , Glucose/therapeutic use , Lipid Metabolism , Myocardial Reperfusion Injury/metabolism
12.
Biology (Basel) ; 11(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36358270

ABSTRACT

Tensins are a family of cellular-adhesion constituents that have been extensively studied. They have instrumental roles in the pathogenesis of numerous diseases. The mammalian tensin family comprises four members: tensin1 (TNS1), tensin2, tensin3, and tensin4. Among them, TNS1 has recently received attention from researchers because of its structural properties. TNS1 engages in various biological processes, such as cell adhesion, polarization, migration, invasion, proliferation, apoptosis, and mechano-transduction, by interacting with various partner proteins. Moreover, the abnormal expression of TNS1 in vivo is associated with the development of various diseases, especially tumors. Interestingly, the role of TNS1 in different tumors is still controversial. Here, we systematically summarize three aspects of TNS1: the gene structure, the biological processes underlying its action, and the dual regulatory role of TNS1 in different tumors through different mechanisms, of which we provide the first overview.

13.
Front Immunol ; 13: 900254, 2022.
Article in English | MEDLINE | ID: mdl-35844498

ABSTRACT

Atherosclerosis is one of the main complications of diabetes mellitus, involving a variety of pathogenic factors. Endothelial dysfunction, inflammation, and oxidative stress are hallmarks of diabetes mellitus and atherosclerosis. Although the ability of diabetes to promote atherosclerosis has been demonstrated, a deeper understanding of the underlying biological mechanisms is critical to identifying new targets. NLRP3 plays an important role in both diabetes and atherosclerosis. While the diversity of its activation modes is one of the underlying causes of complex effects in the progression of diabetes and atherosclerosis, it also provides many new insights for targeted interventions in metabolic diseases.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Atherosclerosis/pathology , Diabetes Mellitus/etiology , Humans , Inflammation/complications , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress
14.
Am J Physiol Cell Physiol ; 323(2): C617-C629, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35876285

ABSTRACT

Atherosclerosis is a chronic inflammatory vascular disease associated with endothelial dysfunction, inflammation, and atherosclerotic plaque formation. Glycolysis is a conservative and rigorous biological process that decomposes glucose into pyruvate. Its function is to provide the body with energy and intermediate products required for life activities. However, abnormalities in glycolysis flux during the progression of atherosclerosis accelerate the disease progression. Herein, we review the role of glycolysis in the development of atherosclerosis to provide new ideas for devising novel antiatherosclerosis strategies.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Disease Models, Animal , Glycolysis , Humans , Inflammation
15.
Front Cardiovasc Med ; 9: 768834, 2022.
Article in English | MEDLINE | ID: mdl-35252379

ABSTRACT

After myocardial infarction, the heart enters a remodeling and repair phase that involves myocardial cell damage, inflammatory response, fibroblast activation, and, ultimately, angiogenesis. In this process, the proportions and functions of cardiomyocytes, immune cells, fibroblasts, endothelial cells, and other cells change. Identification of the potential differences in gene expression among cell types and/or transcriptome heterogeneity among cells of the same type greatly contribute to understanding the cellular changes that occur in heart and disease conditions. Recent advent of the single-cell transcriptome sequencing technology has facilitated the exploration of single cell diversity as well as comprehensive elucidation of the natural history and molecular mechanisms of myocardial infarction. In this manner, novel putative therapeutic targets for myocardial infarction treatment may be detected and clinically applied.

16.
Biomed Pharmacother ; 145: 112432, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34798472

ABSTRACT

Calenduloside E (CE) is a saponin isolated from Aralia elata (Miq) Seem, which has anti-cardiovascular disease effects. This study aims to evaluate the anti-myocardial ischemia-reperfusion injury (MIRI) mechanisms of CE and regulation of BAG3 on calcium overload. We adopted siRNA to interfere with BAG3 expression in H9c2 cardiomyocytes and used adenovirus to interfere with BAG3 expression (Ad-BAG3) in primary neonatal rat cardiomyocytes (PNRCMs) to clarify the role of BAG3 in mitigating MIRI by CE. The results showed that CE reduced calcium overload, and Ad-BAG3 had a significant regulatory effect on L-type Ca2+ channels (LTCC) but no effects on other calcium-related proteins. And BAG3 and LTCC were colocalized in myocardial tissue and BAG3 inhibited LTCC expression. Surprisingly, CE had no regulatory effect on LTCC mRNA, but CE promoted LTCC degradation through the autophagy-lysosomal pathway rather than the ubiquitination-protease pathway. Autophagy inhibitor played a negative regulation of cardiomyocyte contraction rhythm and field potential signals. Ad-BAG3 inhibited autophagy by regulating the expression of autophagy-related proteins and autophagy agonist treatment suppressed calcium overload. Therefore, CE promoted autophagy through BAG3, thereby regulating LTCC expression, inhibiting calcium overload, and ultimately reducing MIRI.


Subject(s)
Calcium/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocytes, Cardiac/drug effects , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Adaptor Proteins, Signal Transducing/genetics , Animals , Animals, Newborn , Apoptosis Regulatory Proteins/genetics , Autophagy/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/metabolism , Cell Line , Male , Myocardial Reperfusion Injury/physiopathology , Oleanolic Acid/pharmacology , Rats , Rats, Sprague-Dawley
17.
Ann Palliat Med ; 10(10): 11221-11225, 2021 10.
Article in English | MEDLINE | ID: mdl-34763480

ABSTRACT

Postherpetic neuralgia (PHN) is a common and severe chronic complication of the herpes zoster (HZ) virus (shingles) involving prolonged pain which may last from weeks to years. Primary treatment involves oral therapies, although few patients experience a pain reduction of greater than 50%. Due to limited effective treatments, symptoms and comorbidities, including physical disability and emotional distress, are recurrent, and interfere with daily activities and sleep. A 34-year-old male had experienced refractory PHN on the right 3 to 5 thoracic dermatomes for about 3.5 years, accompanied with mood and sleep disorder. During this time, several treatments had been attempted, including systemic tricyclic antidepressants, opioid analgesics, anticonvulsants, topical lidocaine, epidural block, and spinal cord stimulation (SCS); however, their outcomes had been unsatisfactory. Low frequency sound stimulation (LFSS) was found effective in reducing the pain, and improving the state of both mood and the sleep. At the time of this report, the patient had been using this treatment for more than 240 days, his quality of life had improved significantly, and no side effects had been observed. LFSS is component of musical therapy, which categorized under complementary and alternative medicine (CAM). It uses audible sound (40-120 Hz) to produce a physical effect through the transducer when applied directly to the body, which can affect pain perception via mood and sleep improvement, activating an anti-pain effect in the brain. This case provides a rationale to study LFSS in patients with refractory neuropathic pain.


Subject(s)
Herpes Zoster , Neuralgia, Postherpetic , Sleep Wake Disorders , Adult , Analgesics/therapeutic use , Herpes Zoster/drug therapy , Humans , Male , Neuralgia, Postherpetic/drug therapy , Quality of Life , Sleep Wake Disorders/drug therapy
18.
Oxid Med Cell Longev ; 2021: 6643615, 2021.
Article in English | MEDLINE | ID: mdl-34093960

ABSTRACT

Myocardial ischemia/reperfusion injury (MI/RI) is an urgent problem with a great impact on health globally. However, its pathological mechanisms have not been fully elucidated. Hydroxysafflor yellow A (HSYA) has a protective effect against MI/RI. This study is aimed at further clarifying the relationship between HSYA cardioprotection and calcium overload as well as the underlying mechanisms. We verified the protective effect of HSYA on neonatal rat primary cardiomyocytes (NPCMs) and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from hypoxia-reoxygenation (HR) injury. To explore the cardioprotective mechanism of HSYA, we employed calcium fluorescence, TUNEL assay, JC-1 staining, and western blotting. Finally, cardio-ECR and patch-clamp experiments were used to explain the regulation of L-type calcium channels (LTCC) in cardioprotection mediated by HSYA. The results showed that HSYA reduced the levels of myocardial enzymes and protected NPCMs from HR injury. HSYA also restored the contractile function of hiPSC-CMs and field potential signal abnormalities caused by HR and exerted a protective effect on cardiac function. Further, we demonstrated that HSYA protects cardiomyocytes from HR injury by decreasing mitochondrial membrane potential and inhibiting apoptosis and calcium overload. Patch-clamp results revealed that MI/RI caused a sharp increase in calcium currents, which was inhibited by pretreatment with HSYA. Furthermore, we found that HSYA restored contraction amplitude, beat rate, and field potential duration of hiPSC-CMs, which were disrupted by the LTCC agonist Bay-K8644. Patch-clamp experiments also showed that HSYA inhibits Bay-K8644-induced calcium current, with an effect similar to that of the LTCC inhibitor nisoldipine. Therefore, our data suggest that HSYA targets LTCC to inhibit calcium overload and apoptosis of cardiomyocytes, thereby exerting a cardioprotective effect and reducing MI/RI injury.


Subject(s)
Apoptosis/drug effects , Calcium/adverse effects , Chalcone/analogs & derivatives , Myocardial Reperfusion Injury/drug therapy , Pigments, Biological/therapeutic use , Quinones/therapeutic use , Animals , Chalcone/pharmacology , Chalcone/therapeutic use , Humans , Pigments, Biological/pharmacology , Quinones/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...