Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Signal Transduct Target Ther ; 8(1): 414, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857609

ABSTRACT

Reversing ventricular remodeling represents a promising treatment for the post-myocardial infarction (MI) heart failure (HF). Here, we report a novel small molecule HHQ16, an optimized derivative of astragaloside IV, which effectively reversed infarction-induced myocardial remodeling and improved cardiac function by directly acting on the cardiomyocyte to reverse hypertrophy. The effect of HHQ16 was associated with a strong inhibition of a newly discovered Egr2-affiliated transcript lnc9456 in the heart. While minimally expressed in normal mouse heart, lnc9456 was dramatically upregulated in the heart subjected to left anterior descending coronary artery ligation (LADL) and in cardiomyocytes subjected to hypertrophic stimulation. The critical role of lnc9456 in cardiomyocyte hypertrophy was confirmed by specific overexpression and knockout in vitro. A physical interaction between lnc9456 and G3BP2 increased NF-κB nuclear translocation, triggering hypertrophy-related cascades. HHQ16 physically bound to lnc9456 with a high-affinity and induced its degradation. Cardiomyocyte-specific lnc9456 overexpression induced, but knockout prevented LADL-induced, cardiac hypertrophy and dysfunction. HHQ16 reversed the effect of lnc9456 overexpression while lost its protective role when lnc9456 was deleted, further confirming lnc9456 as the bona fide target of HHQ16. We further identified the human ortholog of lnc9456, also an Egr2-affiliated transcript, lnc4012. Similarly, lnc4012 was significantly upregulated in hypertrophied failing hearts of patients with dilated cardiomyopathy. HHQ16 also specifically bound to lnc4012 and caused its degradation and antagonized its hypertrophic effects. Targeted degradation of pathological increased lnc4012/lnc9456 by small molecules might serve as a novel promising strategy to regress infarction-induced cardiac hypertrophy and HF.


Subject(s)
Heart Failure , Myocardial Infarction , Humans , Mice , Animals , Heart Failure/drug therapy , Heart Failure/genetics , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/genetics , Cardiomegaly/metabolism
2.
Acta Pharmacol Sin ; 44(12): 2347-2357, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37532784

ABSTRACT

SARS-CoV-2 infection causes injuries of not only the lungs but also the heart and endothelial cells in vasculature of multiple organs, and induces systemic inflammation and immune over-reactions, which makes COVID-19 a disease phenome that simultaneously affects multiple systems. Cardiovascular diseases (CVD) are intrinsic risk and causative factors for severe COVID-19 comorbidities and death. The wide-spread infection and reinfection of SARS-CoV-2 variants and the long-COVID may become a new common threat to human health and propose unprecedented impact on the risk factors, pathophysiology, and pharmacology of many diseases including CVD for a long time. COVID-19 has highlighted the urgent demand for precision medicine which needs new knowledge network to innovate disease taxonomy for more precise diagnosis, therapy, and prevention of disease. A deeper understanding of CVD in the setting of COVID-19 phenome requires a paradigm shift from the current phenotypic study that focuses on the virus or individual symptoms to phenomics of COVID-19 that addresses the inter-connectedness of clinical phenotypes, i.e., clinical phenome. Here, we summarize the CVD manifestations in the full clinical spectrum of COVID-19, and the phenome-wide association study of CVD interrelated to COVID-19. We discuss the underlying biology for CVD in the COVID-19 phenome and the concept of precision medicine with new phenomic taxonomy that addresses the overall pathophysiological responses of the body to the SARS-CoV-2 infection. We also briefly discuss the unique taxonomy of disease as Zheng-hou patterns in traditional Chinese medicine, and their potential implications in precision medicine of CVD in the post-COVID-19 era.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Cardiovascular Diseases/genetics , Phenomics , Precision Medicine , SARS-CoV-2/genetics , Post-Acute COVID-19 Syndrome , Endothelial Cells
3.
Chem Biol Interact ; 337: 109400, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33516661

ABSTRACT

The effects of long-term alcohol consumptions on cognitive function remain elusive with contradictory results. Whilst it is widely accepted that long-term intoxication can cause cognitive impairment, moderate drinking can improve cognitive function. In reality, many older people and those with chronic medical conditions are long-term alcohol consumers in Asian countries. Our previous studies have suggested that long-term alcohol consumption can damage blood-brain barrier (BBB) integrity and aggravate cognitive deficit in APPswe/PS1De9 mice, but little is known about the underlying mechanisms, especially whether this consumption can cause cognitive decline via aggravating BBB damage in people who are exposed to the risk factors for cognitive disorders such as aging or inflammation. These questions were addressed in this study. The mouse models of cognitive deficit induced by d-galactose or lipopolysaccharide, the important risk conditions in human on cognitive function, were used to evaluate the effects of long-term alcohol consumption on the BBB integrity. After alcohol administration for 30 days in these models the BBB integrity was significantly destroyed with remarkably increased permeability and down-regulated protein expression of zonula occludens-1, VE-cadherin, occludin, low-density lipoprotein receptor-related protein-1, receptor for advanced glycation end products, major facilitator superfamily domain-containing protein-2a and aquaporin-4, which is the most closely related with the structure and function of BBB integrity. Meanwhile, the level of oxidative stress in d-galactose mice or inflammatory factors in cortex and serum in lipopolysaccharide mice, which might be involved in the cognitive dysfunctions, was significantly amplified. Furthermore, the impaired memory and hippocampal neuron damage induced by d-galactose and lipopolysaccharide were concurrently aggravated. Collectively, our study provided novel and compelling evidence that the structural and functional proteins for BBB integrity may be the primary targets for the detrimental effects of alcohol abuse that lead to cognitive dysfunction and neurological deficits in high risk populations.


Subject(s)
Blood-Brain Barrier/drug effects , Ethanol/toxicity , Alcoholism/metabolism , Alcoholism/pathology , Animals , Blood-Brain Barrier/metabolism , Disease Models, Animal , Down-Regulation/drug effects , Galactose/toxicity , Hippocampus/drug effects , Hippocampus/physiology , Lipopolysaccharides/toxicity , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Male , Maze Learning/drug effects , Mice , Occludin/metabolism , Oxidative Stress/drug effects , Permeability/drug effects , Zonula Occludens-1 Protein/metabolism
4.
J Cyst Fibros ; 20(3): 516-524, 2021 05.
Article in English | MEDLINE | ID: mdl-33279469

ABSTRACT

BACKGROUND: The pathophysiological roles of cystic fibrosis transmembrane-conductance regulator (CFTR) Cl- channels in the regulation of blood pressure (BP) remain controversial. Here we studied the function of CFTR Cl- channels in regulation of BP and in the high-fructose-salt-diet (HFSD) induced hypertension in mice. METHODS: The systolic, diastolic and mean BP (SBP, DBP and MBP, respectively) were continuously monitored from unrestricted conscious wild-type (cftr+/+) FVB and CFTR-knockout (cftr-/-) mice (8-week old, male). HFSD (64.7% fructose, 2% NaCl water) or control normal starch diet (CNSD, 58.9% corn starch, 0 NaCl water) was given for 8 weeks and vascular Doppler were performed. Real-time PCR and Western blot were used to examine mRNA and protein expression, respectively. RESULTS: The aortic stiffness, daytime and nighttime SBP, DBP, and MBP of the cftr-/- mice were significantly higher than those in the age- and gender-matched cftr+/+ mice, which is consistent with the findings of increased vascular resistance in cystic fibrosis patients. The aortic stiffness, daytime and nighttime SBP, DBP, and MBP of cftr+/+ mice fed with HFSD were all significantly higher than those fed with CNSD. Importantly, HFSD caused a significant decrease in mRNA and protein expression of WINK1, WINK4 and CFTR in aorta and mesenteric arteries, but not in the kidney, corroborating that HSFD-induced downregulation of WINKs and loss of CFTR function specifically in the arteries may mediate the increased BP. CONCLUSIONS: CFTR regulates peripheral arterial resistance and BP in vivo. HFSD-induced CFTR downregulation specifically in the arteries may be a novel mechanism for hypertension.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Cystic Fibrosis/physiopathology , Vascular Resistance/physiology , Animals , Blood Pressure/physiology , Diet, High-Fat , Dietary Carbohydrates/administration & dosage , Down-Regulation , Fructose/administration & dosage , Male , Mice , Ultrasonography, Doppler
5.
Acta Pharmacol Sin ; 41(11): 1377-1386, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32968208

ABSTRACT

The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and an ongoing severe pandemic. Curative drugs specific for COVID-19 are currently lacking. Chloroquine phosphate and its derivative hydroxychloroquine, which have been used in the treatment and prevention of malaria and autoimmune diseases for decades, were found to inhibit SARS-CoV-2 infection with high potency in vitro and have shown clinical and virologic benefits in COVID-19 patients. Therefore, chloroquine phosphate was first used in the treatment of COVID-19 in China. Later, under a limited emergency-use authorization from the FDA, hydroxychloroquine in combination with azithromycin was used to treat COVID-19 patients in the USA, although the mechanisms of the anti-COVID-19 effects remain unclear. Preliminary outcomes from clinical trials in several countries have generated controversial results. The desperation to control the pandemic overrode the concerns regarding the serious adverse effects of chloroquine derivatives and combination drugs, including lethal arrhythmias and cardiomyopathy. The risks of these treatments have become more complex as a result of findings that COVID-19 is actually a multisystem disease. While respiratory symptoms are the major clinical manifestations, cardiovascular abnormalities, including arrhythmias, myocarditis, heart failure, and ischemic stroke, have been reported in a significant number of COVID-19 patients. Patients with preexisting cardiovascular conditions (hypertension, arrhythmias, etc.) are at increased risk of severe COVID-19 and death. From pharmacological and cardiovascular perspectives, therefore, the treatment of COVID-19 with chloroquine and its derivatives should be systematically evaluated, and patients should be routinely monitored for cardiovascular conditions to prevent lethal adverse events.


Subject(s)
Cardiovascular Diseases/complications , Chloroquine/analogs & derivatives , Chloroquine/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Antiviral Agents/pharmacology , COVID-19 , Chloroquine/pharmacology , Humans , Pandemics , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...